Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,39 @@
|
|
1 |
-
from
|
2 |
-
from langchain import
|
3 |
-
import gradio
|
|
|
4 |
import os
|
5 |
|
6 |
os.environ["OPENAI_API_KEY"] = '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'
|
7 |
|
8 |
def construct_index(directory_path):
|
9 |
-
|
10 |
-
num_outputs =
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
index =
|
19 |
-
|
20 |
-
|
21 |
-
index.storage_context.persist(persist_dir="indexes")
|
22 |
|
23 |
return index
|
24 |
|
25 |
def chatbot(input_text):
|
26 |
-
|
27 |
-
|
28 |
-
storage_context = StorageContext.from_defaults(persist_dir="indexes")
|
29 |
-
|
30 |
-
#load indexes from directory using storage_context
|
31 |
-
query_engne = load_index_from_storage(storage_context).as_query_engine()
|
32 |
-
|
33 |
-
response = query_engne.query(input_text)
|
34 |
-
|
35 |
-
#returning the response
|
36 |
return response.response
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
title="Custom-trained AI Chatbot")
|
43 |
|
44 |
-
#Constructing indexes based on the documents in trainingData folder
|
45 |
index = construct_index("trainingData")
|
46 |
-
|
47 |
-
#launching the web UI using gradio
|
48 |
iface.launch()
|
|
|
|
1 |
+
from gpt_index import SimpleDirectoryReader, GPTListIndex, GPTSimpleVectorIndex, LLMPredictor, PromptHelper, ServiceContext
|
2 |
+
from langchain.chat_models import ChatOpenAI
|
3 |
+
import gradio as gr
|
4 |
+
import sys
|
5 |
import os
|
6 |
|
7 |
os.environ["OPENAI_API_KEY"] = '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'
|
8 |
|
9 |
def construct_index(directory_path):
|
10 |
+
max_input_size = 4096
|
11 |
+
num_outputs = 512
|
12 |
+
max_chunk_overlap = 20
|
13 |
+
chunk_size_limit = 600
|
14 |
|
15 |
+
prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
|
16 |
|
17 |
+
llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.7, model_name="gpt-4", max_tokens=num_outputs))
|
18 |
|
19 |
+
documents = SimpleDirectoryReader(directory_path).load_data()
|
20 |
|
21 |
+
index = GPTSimpleVectorIndex(documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
22 |
+
|
23 |
+
index.save_to_disk('index.json')
|
|
|
24 |
|
25 |
return index
|
26 |
|
27 |
def chatbot(input_text):
|
28 |
+
index = GPTSimpleVectorIndex.load_from_disk('index.json')
|
29 |
+
response = index.query(input_text, response_mode="compact")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return response.response
|
31 |
|
32 |
+
iface = gr.Interface(fn=chatbot,
|
33 |
+
inputs=gr.components.Textbox(lines=7, label="Enter your text"),
|
34 |
+
outputs="text",
|
35 |
+
title="My Custom-trained AI Chatbot")
|
|
|
36 |
|
|
|
37 |
index = construct_index("trainingData")
|
|
|
|
|
38 |
iface.launch()
|
39 |
+
|