|
|
|
|
|
|
|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import mediapipe as mp |
|
from fpdf import FPDF |
|
import os |
|
|
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) |
|
|
|
def estimate_heart_rate(frame, landmarks): |
|
h, w, _ = frame.shape |
|
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] |
|
mask = np.zeros((h, w), dtype=np.uint8) |
|
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) |
|
cv2.fillConvexPoly(mask, pts, 255) |
|
green_channel = cv2.split(frame)[1] |
|
mean_intensity = cv2.mean(green_channel, mask=mask)[0] |
|
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) |
|
return heart_rate |
|
|
|
def estimate_spo2_rr(heart_rate): |
|
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) |
|
rr = int(12 + abs(heart_rate % 5 - 2)) |
|
return spo2, rr |
|
|
|
def get_risk_color(value, normal_range): |
|
low, high = normal_range |
|
if value < low: |
|
return ("Low", "🔻", "#FFCCCC") |
|
elif value > high: |
|
return ("High", "🔺", "#FFE680") |
|
else: |
|
return ("Normal", "✅", "#CCFFCC") |
|
|
|
def generate_pdf_report(image, results_dict, summary_text): |
|
pdf = FPDF() |
|
pdf.add_page() |
|
pdf.set_font("Arial", "B", 16) |
|
pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C') |
|
|
|
if image is not None: |
|
img_path = "patient_face.jpg" |
|
cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) |
|
pdf.image(img_path, x=80, y=25, w=50) |
|
os.remove(img_path) |
|
pdf.ln(60) |
|
|
|
pdf.set_font("Arial", "B", 12) |
|
pdf.cell(0, 10, "Results Summary", ln=True) |
|
pdf.set_font("Arial", "", 10) |
|
|
|
for key, val in results_dict.items(): |
|
if isinstance(val, (int, float)): |
|
pdf.cell(0, 8, f"{key}: {val}", ln=True) |
|
|
|
pdf.ln(5) |
|
pdf.set_font("Arial", "B", 12) |
|
pdf.cell(0, 10, "AI Summary (English)", ln=True) |
|
pdf.set_font("Arial", "", 10) |
|
for line in summary_text.split("<li>"): |
|
if "</li>" in line: |
|
clean = line.split("</li>")[0].strip() |
|
pdf.multi_cell(0, 8, f"- {clean}") |
|
|
|
output_path = "SL_Diagnostics_Face_Scan_Report.pdf" |
|
pdf.output(output_path) |
|
return output_path |
|
|
|
def infer_lab_results(image, landmarks): |
|
h, w, _ = image.shape |
|
forehead = image[int(0.1*h):int(0.25*h), int(0.35*w):int(0.65*w)] |
|
mean_intensity = np.mean(cv2.cvtColor(forehead, cv2.COLOR_BGR2GRAY)) |
|
skin_redness = np.mean(image[:, :, 2]) - np.mean(image[:, :, 1]) |
|
|
|
return { |
|
'Hemoglobin': round(10 + (mean_intensity / 255.0) * 7, 1), |
|
'WBC Count': round(4 + (1 - mean_intensity / 255.0) * 7, 1), |
|
'Platelets': int(150 + (mean_intensity / 255.0) * 150), |
|
'Iron': round(40 + (skin_redness / 50.0) * 40, 1), |
|
'Ferritin': round(25 + (skin_redness / 50.0) * 70, 1), |
|
'TIBC': round(250 + ((255 - mean_intensity) / 255.0) * 150, 1), |
|
'Bilirubin': round(0.5 + (255 - mean_intensity) / 255.0 * 1.5, 2), |
|
'Creatinine': round(0.8 + (skin_redness / 255.0) * 0.6, 2), |
|
'TSH': round(1.0 + (skin_redness / 255.0) * 2.0, 2), |
|
'Cortisol': round(12 + (skin_redness / 255.0) * 10, 2), |
|
'Fasting Blood Sugar': int(80 + (skin_redness / 255.0) * 60), |
|
'HbA1c': round(5.0 + (skin_redness / 255.0) * 1.5, 2), |
|
'SpO2': round(97 - (255 - mean_intensity) / 255.0 * 5, 1), |
|
'Heart Rate': estimate_heart_rate(image, landmarks), |
|
'Respiratory Rate': estimate_spo2_rr(estimate_heart_rate(image, landmarks))[1] |
|
} |
|
|
|
|
|
def app(): |
|
def process(image): |
|
if image is None: |
|
return "Please upload a face image.", None, None |
|
|
|
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
result = face_mesh.process(frame_rgb) |
|
if not result.multi_face_landmarks: |
|
return "Face not detected.", None, None |
|
|
|
landmarks = result.multi_face_landmarks[0].landmark |
|
heart_rate = estimate_heart_rate(frame_rgb, landmarks) |
|
spo2, rr = estimate_spo2_rr(heart_rate) |
|
|
|
results_dict = infer_lab_results(frame_rgb, landmarks) |
|
|
|
summary_text = "<li>Your hemoglobin is a bit low...</li><li>Consider iron tests.</li>" |
|
pdf_path = generate_pdf_report(image, results_dict, summary_text) |
|
|
|
table_html = """ |
|
<table style='width:100%;border-collapse:collapse;margin-top:10px;'> |
|
<tr><th colspan='3' style='background:#ddd;text-align:left;padding:6px;'>🩸 Hematology</th></tr> |
|
<tr><th style='border:1px solid #ccc;padding:6px;'>Test</th><th style='border:1px solid #ccc;padding:6px;'>Result</th><th style='border:1px solid #ccc;padding:6px;'>Level</th></tr> |
|
""" |
|
|
|
summary_block = """ |
|
<div style='margin-top:20px;padding:12px;border:1px dashed #999;background:#f9f9f9;'> |
|
<h4>📝 Summary in Your Language</h4> |
|
<details><summary><b>Hindi</b></summary> |
|
<ul><li>आपका हीमोग्लोबिन थोड़ा कम है — यह हल्के एनीमिया का संकेत हो सकता है। कृपया CBC और आयरन टेस्ट करवाएं।</li></ul> |
|
</details> |
|
<details><summary><b>Telugu</b></summary> |
|
<ul><li>మీ హిమోగ్లోబిన్ తక్కువగా ఉంది — ఇది అనీమియా సూచించవచ్చు. CBC, Iron పరీక్షలు చేయించండి.</li></ul> |
|
</details> |
|
</div> |
|
""" |
|
<details><summary><b>Telugu</b></summary> |
|
<ul><li>మీ హిమోగ్లోబిన్ తక్కువగా ఉంది — ఇది అనీమియా సూచించవచ్చు. CBC, Iron పరీక్షలు చేయించండి.</li></ul> |
|
</details> |
|
</div>""" |
|
|
|
full_html = table_html + summary_block |
|
return full_html, frame_rgb, pdf_path |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(""" |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="📸 Upload Face", type="numpy") |
|
button = gr.Button("🔍 Run Analysis") |
|
pdf_output = gr.File(label="📄 Download Report") |
|
with gr.Column(): |
|
note = gr.HTML(label="AI-Predicted Test Results Table") |
|
preview = gr.Image(label="Scan Preview") |
|
|
|
button.click(fn=process, inputs=image, outputs=[note, preview, pdf_output]) |
|
|
|
demo.launch() |
|
|
|
app() |
|
|