AI-LAB / app.py
SuriRaja's picture
Update app.py
db330ad verified
raw
history blame
6.93 kB
# Face Detection-Based AI Automation of Lab Tests
# UI: Clean table, multilingual summary, PDF-ready
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from fpdf import FPDF
import os
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
def estimate_heart_rate(frame, landmarks):
h, w, _ = frame.shape
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]]
mask = np.zeros((h, w), dtype=np.uint8)
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32)
cv2.fillConvexPoly(mask, pts, 255)
green_channel = cv2.split(frame)[1]
mean_intensity = cv2.mean(green_channel, mask=mask)[0]
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))
return heart_rate
def estimate_spo2_rr(heart_rate):
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
rr = int(12 + abs(heart_rate % 5 - 2))
return spo2, rr
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "🔻", "#FFCCCC")
elif value > high:
return ("High", "🔺", "#FFE680")
else:
return ("Normal", "✅", "#CCFFCC")
def generate_pdf_report(image, results_dict, summary_text):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C')
if image is not None:
img_path = "patient_face.jpg"
cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
pdf.image(img_path, x=80, y=25, w=50)
os.remove(img_path)
pdf.ln(60)
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Results Summary", ln=True)
pdf.set_font("Arial", "", 10)
for key, val in results_dict.items():
if isinstance(val, (int, float)):
pdf.cell(0, 8, f"{key}: {val}", ln=True)
pdf.ln(5)
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "AI Summary (English)", ln=True)
pdf.set_font("Arial", "", 10)
for line in summary_text.split("<li>"):
if "</li>" in line:
clean = line.split("</li>")[0].strip()
pdf.multi_cell(0, 8, f"- {clean}")
output_path = "SL_Diagnostics_Face_Scan_Report.pdf"
pdf.output(output_path)
return output_path
def infer_lab_results(image, landmarks):
h, w, _ = image.shape
forehead = image[int(0.1*h):int(0.25*h), int(0.35*w):int(0.65*w)]
mean_intensity = np.mean(cv2.cvtColor(forehead, cv2.COLOR_BGR2GRAY))
skin_redness = np.mean(image[:, :, 2]) - np.mean(image[:, :, 1])
return {
'Hemoglobin': round(10 + (mean_intensity / 255.0) * 7, 1),
'WBC Count': round(4 + (1 - mean_intensity / 255.0) * 7, 1),
'Platelets': int(150 + (mean_intensity / 255.0) * 150),
'Iron': round(40 + (skin_redness / 50.0) * 40, 1),
'Ferritin': round(25 + (skin_redness / 50.0) * 70, 1),
'TIBC': round(250 + ((255 - mean_intensity) / 255.0) * 150, 1),
'Bilirubin': round(0.5 + (255 - mean_intensity) / 255.0 * 1.5, 2),
'Creatinine': round(0.8 + (skin_redness / 255.0) * 0.6, 2),
'TSH': round(1.0 + (skin_redness / 255.0) * 2.0, 2),
'Cortisol': round(12 + (skin_redness / 255.0) * 10, 2),
'Fasting Blood Sugar': int(80 + (skin_redness / 255.0) * 60),
'HbA1c': round(5.0 + (skin_redness / 255.0) * 1.5, 2),
'SpO2': round(97 - (255 - mean_intensity) / 255.0 * 5, 1),
'Heart Rate': estimate_heart_rate(image, landmarks),
'Respiratory Rate': estimate_spo2_rr(estimate_heart_rate(image, landmarks))[1]
}
# Gradio UI (app launcher)
def app():
def process(image):
if image is None:
return "Please upload a face image.", None, None
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "Face not detected.", None, None
landmarks = result.multi_face_landmarks[0].landmark
heart_rate = estimate_heart_rate(frame_rgb, landmarks)
spo2, rr = estimate_spo2_rr(heart_rate)
results_dict = infer_lab_results(frame_rgb, landmarks)
summary_text = "<li>Your hemoglobin is a bit low...</li><li>Consider iron tests.</li>" # Placeholder
pdf_path = generate_pdf_report(image, results_dict, summary_text)
table_html = """
<table style='width:100%;border-collapse:collapse;margin-top:10px;'>
<tr><th colspan='3' style='background:#ddd;text-align:left;padding:6px;'>🩸 Hematology</th></tr>
<tr><th style='border:1px solid #ccc;padding:6px;'>Test</th><th style='border:1px solid #ccc;padding:6px;'>Result</th><th style='border:1px solid #ccc;padding:6px;'>Level</th></tr>
"""
summary_block = """
<div style='margin-top:20px;padding:12px;border:1px dashed #999;background:#f9f9f9;'>
<h4>📝 Summary in Your Language</h4>
<details><summary><b>Hindi</b></summary>
<ul><li>आपका हीमोग्लोबिन थोड़ा कम है — यह हल्के एनीमिया का संकेत हो सकता है। कृपया CBC और आयरन टेस्ट करवाएं।</li></ul>
</details>
<details><summary><b>Telugu</b></summary>
<ul><li>మీ హిమోగ్లోబిన్ తక్కువగా ఉంది — ఇది అనీమియా సూచించవచ్చు. CBC, Iron పరీక్షలు చేయించండి.</li></ul>
</details>
</div>
"""
<details><summary><b>Telugu</b></summary>
<ul><li>మీ హిమోగ్లోబిన్ తక్కువగా ఉంది — ఇది అనీమియా సూచించవచ్చు. CBC, Iron పరీక్షలు చేయించండి.</li></ul>
</details>
</div>"""
full_html = table_html + summary_block
return full_html, frame_rgb, pdf_path
with gr.Blocks() as demo:
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report""")
with gr.Row():
with gr.Column():
image = gr.Image(label="📸 Upload Face", type="numpy")
button = gr.Button("🔍 Run Analysis")
pdf_output = gr.File(label="📄 Download Report")
with gr.Column():
note = gr.HTML(label="AI-Predicted Test Results Table")
preview = gr.Image(label="Scan Preview")
button.click(fn=process, inputs=image, outputs=[note, preview, pdf_output])
demo.launch()
app()