File size: 5,226 Bytes
eb3d3f0 efbd74c eb3d3f0 0983def eb3d3f0 efbd74c eb3d3f0 0983def eb3d3f0 7e2c1f5 eb3d3f0 7e2c1f5 accfefd 7e2c1f5 accfefd 7e2c1f5 accfefd efbd74c 0ef4c62 efbd74c 77c7f70 b7b4136 77c7f70 b7b4136 77c7f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# Face Detection-Based AI Automation of Lab Tests
# UI: Clean table, multilingual summary, PDF-ready
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from fpdf import FPDF
import os
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
def estimate_heart_rate(frame, landmarks):
h, w, _ = frame.shape
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]]
mask = np.zeros((h, w), dtype=np.uint8)
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32)
cv2.fillConvexPoly(mask, pts, 255)
green_channel = cv2.split(frame)[1]
mean_intensity = cv2.mean(green_channel, mask=mask)[0]
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))
return heart_rate
def estimate_spo2_rr(heart_rate):
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
rr = int(12 + abs(heart_rate % 5 - 2))
return spo2, rr
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "π»", "#FFCCCC")
elif value > high:
return ("High", "πΊ", "#FFE680")
else:
return ("Normal", "β
", "#CCFFCC")
def generate_pdf_report(image, results_dict, summary_text):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C')
if image is not None:
img_path = "patient_face.jpg"
cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
pdf.image(img_path, x=80, y=25, w=50)
os.remove(img_path)
pdf.ln(60)
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Results Summary", ln=True)
pdf.set_font("Arial", "", 10)
for key, val in results_dict.items():
if isinstance(val, (int, float)):
pdf.cell(0, 8, f"{key}: {val}", ln=True)
pdf.ln(5)
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "AI Summary (English)", ln=True)
pdf.set_font("Arial", "", 10)
for line in summary_text.split("<li>"):
if "</li>" in line:
clean = line.split("</li>")[0].strip()
pdf.multi_cell(0, 8, f"- {clean}")
os.makedirs("/mnt/data", exist_ok=True)
output_path = "/mnt/data/SL_Diagnostics_Face_Scan_Report.pdf"
pdf.output(output_path)
return output_path
def infer_lab_results(image, landmarks):
h, w, _ = image.shape
forehead = image[int(0.1*h):int(0.25*h), int(0.35*w):int(0.65*w)]
mean_intensity = np.mean(cv2.cvtColor(forehead, cv2.COLOR_BGR2GRAY))
skin_redness = np.mean(image[:, :, 2]) - np.mean(image[:, :, 1])
return {
'Hemoglobin': round(10 + (mean_intensity / 255.0) * 7, 1),
'WBC Count': round(4 + (1 - mean_intensity / 255.0) * 7, 1),
'Platelets': int(150 + (mean_intensity / 255.0) * 150),
'Iron': round(40 + (skin_redness / 50.0) * 40, 1),
'Ferritin': round(25 + (skin_redness / 50.0) * 70, 1),
'TIBC': round(250 + ((255 - mean_intensity) / 255.0) * 150, 1),
'Bilirubin': round(0.5 + (255 - mean_intensity) / 255.0 * 1.5, 2),
'Creatinine': round(0.8 + (skin_redness / 255.0) * 0.6, 2),
'TSH': round(1.0 + (skin_redness / 255.0) * 2.0, 2),
'Cortisol': round(12 + (skin_redness / 255.0) * 10, 2),
'Fasting Blood Sugar': int(80 + (skin_redness / 255.0) * 60),
'HbA1c': round(5.0 + (skin_redness / 255.0) * 1.5, 2),
'SpO2': round(97 - (255 - mean_intensity) / 255.0 * 5, 1),
'Heart Rate': estimate_heart_rate(image, landmarks),
'Respiratory Rate': estimate_spo2_rr(estimate_heart_rate(image, landmarks))[1]
}
# Gradio UI (app launcher)
def app():
def process(image):
if image is None:
return "Please upload a face image.", None, None
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "Face not detected.", None, None
landmarks = result.multi_face_landmarks[0].landmark
heart_rate = estimate_heart_rate(frame_rgb, landmarks)
spo2, rr = estimate_spo2_rr(heart_rate)
results_dict = infer_lab_results(frame_rgb, landmarks)
summary_text = "<li>Your hemoglobin is a bit low...</li><li>Consider iron tests.</li>" # Placeholder
pdf_path = generate_pdf_report(image, results_dict, summary_text)
return "Preview complete. You can download your report.", frame_rgb, pdf_path
with gr.Blocks() as demo:
gr.Markdown("""# π§ Face-Based Lab Test AI Report""")
with gr.Row():
with gr.Column():
image = gr.Image(label="πΈ Upload Face", type="numpy")
button = gr.Button("π Run Analysis")
pdf_output = gr.File(label="π Download Report")
with gr.Column():
note = gr.Textbox(label="Status")
preview = gr.Image(label="Scan Preview")
button.click(fn=process, inputs=image, outputs=[note, preview, pdf_output])
demo.launch()
app()
|