import gradio as gr from transformers import pipeline # Load the pretrained model pipeline pipe = pipeline("text-classification", model="ahmedrachid/FinancialBERT-Sentiment-Analysis") # Footer content footer = """ --- ### Sasiraj Shanmugasundaram #### Machine Learning Deployment Project """ # Function for prediction def predict_sentiment(news_text): result = pipe(news_text)[0] return result['label'] # Create the Gradio interface iface = gr.Interface( fn=predict_sentiment, inputs=gr.Textbox(lines=4, placeholder="Type your financial news here..."), outputs="text", title="Financial Sentiment Analysis", description="Enter financial news and get sentiment analysis based on FinancialBERT." ) # Add footer using Markdown # Add footer using Markdown gr.Markdown(footer) # Launch the app iface.launch()