Spaces:
Sleeping
Sleeping
Update custom_models/groundedness_checker/evaluate_groundedness_model.py
Browse files
custom_models/groundedness_checker/evaluate_groundedness_model.py
CHANGED
@@ -1,84 +1,83 @@
|
|
1 |
-
|
2 |
-
from llmgaurdrails.custom_models.groundedness_checker.pdf_data_chunker import process_pdf
|
3 |
-
import pandas as pd
|
4 |
-
from llmgaurdrails.custom_models.groundedness_checker.llm_based_qa_generator import LLMBasedQAGenerator
|
5 |
-
import pickle
|
6 |
-
from llmgaurdrails.model_inference.groundedness_checker import GroundednessChecker
|
7 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
|
8 |
-
|
9 |
-
|
10 |
-
def get_eval_data(eval_pdf_paths:list,
|
11 |
-
regenerate=False,
|
12 |
-
path_to_save='eval_dataset'):
|
13 |
-
|
14 |
-
|
15 |
-
if regenerate:
|
16 |
-
print("regenerating")
|
17 |
-
|
18 |
-
# pdf_path = # Replace with your PDF
|
19 |
-
pdf_paths = eval_pdf_paths
|
20 |
-
|
21 |
-
all_chunks = []
|
22 |
-
|
23 |
-
for path in pdf_paths:
|
24 |
-
chunks = process_pdf(path)
|
25 |
-
all_chunks.append(chunks)
|
26 |
-
|
27 |
-
chunks_flattened = [x for xs in all_chunks for x in xs]
|
28 |
-
|
29 |
-
qa_generator = LLMBasedQAGenerator()
|
30 |
-
|
31 |
-
dataset = qa_generator.generate_dataset(chunks_flattened ,persist_dataset=True,presisted_file_path=path_to_save)
|
32 |
-
|
33 |
-
return dataset
|
34 |
-
else:
|
35 |
-
if path_to_save:
|
36 |
-
dataset = pickle.load(open(path_to_save,'rb'))
|
37 |
-
return dataset
|
38 |
-
else:
|
39 |
-
raise ValueError("Please specify the path where the dataset was previously saved in the parameter 'path_to_save' ")
|
40 |
-
|
41 |
-
def evaluate(dataset):
|
42 |
-
groundedness_checker = GroundednessChecker()
|
43 |
-
eval_df = pd.DataFrame(data= dataset)
|
44 |
-
|
45 |
-
predictions = []
|
46 |
-
confidence_scores = []
|
47 |
-
|
48 |
-
for i,row in eval_df.iterrows():
|
49 |
-
groundedness_result = groundedness_checker.check(
|
50 |
-
question=row['question'],
|
51 |
-
answer=row['answer'],
|
52 |
-
context=row['context'])
|
53 |
-
|
54 |
-
predictions.append(groundedness_result['is_grounded'])
|
55 |
-
confidence_scores.append(groundedness_result['confidence'])
|
56 |
-
|
57 |
-
eval_df['predicted'] = predictions
|
58 |
-
eval_df['confidence'] = confidence_scores
|
59 |
-
|
60 |
-
accuracy = accuracy_score(eval_df['label'], eval_df['predicted'])
|
61 |
-
precision = precision_score(eval_df['label'], eval_df['predicted'])
|
62 |
-
recall = recall_score(eval_df['label'], eval_df['predicted'])
|
63 |
-
f1 = f1_score(eval_df['label'], eval_df['predicted'])
|
64 |
-
conf_matrix = confusion_matrix(eval_df['label'], eval_df['predicted'])
|
65 |
-
|
66 |
-
|
67 |
-
print("
|
68 |
-
print("
|
69 |
-
print("
|
70 |
-
print("
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
dataset
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
|
|
1 |
+
|
2 |
+
from llmgaurdrails.custom_models.groundedness_checker.pdf_data_chunker import process_pdf
|
3 |
+
import pandas as pd
|
4 |
+
from llmgaurdrails.custom_models.groundedness_checker.llm_based_qa_generator import LLMBasedQAGenerator
|
5 |
+
import pickle
|
6 |
+
from llmgaurdrails.model_inference.groundedness_checker import GroundednessChecker
|
7 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
|
8 |
+
|
9 |
+
|
10 |
+
def get_eval_data(eval_pdf_paths:list,
|
11 |
+
regenerate=False,
|
12 |
+
path_to_save='eval_dataset'):
|
13 |
+
|
14 |
+
|
15 |
+
if regenerate:
|
16 |
+
print("regenerating")
|
17 |
+
|
18 |
+
# pdf_path = # Replace with your PDF
|
19 |
+
pdf_paths = eval_pdf_paths
|
20 |
+
|
21 |
+
all_chunks = []
|
22 |
+
|
23 |
+
for path in pdf_paths:
|
24 |
+
chunks = process_pdf(path)
|
25 |
+
all_chunks.append(chunks)
|
26 |
+
|
27 |
+
chunks_flattened = [x for xs in all_chunks for x in xs]
|
28 |
+
|
29 |
+
qa_generator = LLMBasedQAGenerator()
|
30 |
+
|
31 |
+
dataset = qa_generator.generate_dataset(chunks_flattened ,persist_dataset=True,presisted_file_path=path_to_save)
|
32 |
+
|
33 |
+
return dataset
|
34 |
+
else:
|
35 |
+
if path_to_save:
|
36 |
+
dataset = pickle.load(open(path_to_save,'rb'))
|
37 |
+
return dataset
|
38 |
+
else:
|
39 |
+
raise ValueError("Please specify the path where the dataset was previously saved in the parameter 'path_to_save' ")
|
40 |
+
|
41 |
+
def evaluate(dataset):
|
42 |
+
groundedness_checker = GroundednessChecker()
|
43 |
+
eval_df = pd.DataFrame(data= dataset)
|
44 |
+
|
45 |
+
predictions = []
|
46 |
+
confidence_scores = []
|
47 |
+
|
48 |
+
for i,row in eval_df.iterrows():
|
49 |
+
groundedness_result = groundedness_checker.check(
|
50 |
+
question=row['question'],
|
51 |
+
answer=row['answer'],
|
52 |
+
context=row['context'])
|
53 |
+
|
54 |
+
predictions.append(groundedness_result['is_grounded'])
|
55 |
+
confidence_scores.append(groundedness_result['confidence'])
|
56 |
+
|
57 |
+
eval_df['predicted'] = predictions
|
58 |
+
eval_df['confidence'] = confidence_scores
|
59 |
+
|
60 |
+
accuracy = accuracy_score(eval_df['label'], eval_df['predicted'])
|
61 |
+
precision = precision_score(eval_df['label'], eval_df['predicted'])
|
62 |
+
recall = recall_score(eval_df['label'], eval_df['predicted'])
|
63 |
+
f1 = f1_score(eval_df['label'], eval_df['predicted'])
|
64 |
+
conf_matrix = confusion_matrix(eval_df['label'], eval_df['predicted'])
|
65 |
+
|
66 |
+
print("Accuracy:", accuracy)
|
67 |
+
print("Precision:", precision)
|
68 |
+
print("Recall:", recall)
|
69 |
+
print("F1 Score:", f1)
|
70 |
+
print("Confusion Matrix:\n", conf_matrix)
|
71 |
+
|
72 |
+
|
73 |
+
# Usage
|
74 |
+
if __name__ == "__main__":
|
75 |
+
dataset = get_eval_data(eval_pdf_paths=[["D:\Sasidhar\Projects\llm_gaurdrails\llmgaurdrails\data\CreditCard.pdf"]])
|
76 |
+
evaluate(dataset)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
|
|
83 |
|