Sasidhar's picture
Upload 16 files
826f9a4 verified
raw
history blame
1.57 kB
from llmgaurdrails.custom_models.groundedness_checker.pdf_data_chunker import process_pdf
from llmgaurdrails.custom_models.groundedness_checker.llm_based_qa_generator import LLMBasedQAGenerator
from llmgaurdrails.custom_models.groundedness_checker.grounding_classifier import GroundingTrainer
from llmgaurdrails.custom_models.groundedness_checker.simple_qa_generator import SimpleQAGenerator
from llmgaurdrails.custom_models.groundedness_checker.evaluate_groundedness_model import evaluate,get_eval_data
# Usage
if __name__ == "__main__":
# pdf_path = # Replace with your PDF
trainning_pdf_paths = ["D:\Sasidhar\Projects\cba\data\CreditCard.pdf" ,
"D:\Sasidhar\Projects\cba\data\home_insurance_pds.pdf"]
eval_pdf_paths = ["D:\Sasidhar\Projects\llm_gaurdrails\llmgaurdrails\data\CreditCard.pdf"]
all_chunks = []
for path in trainning_pdf_paths:
chunks = process_pdf(trainning_pdf_paths[0])
all_chunks.append(chunks)
chunks_flattened = [x for xs in all_chunks for x in xs]
# generate qa dataset
qa_generator = LLMBasedQAGenerator()
dataset = qa_generator.generate_dataset(chunks_flattened,persist_dataset=True)
trainer = GroundingTrainer()
trainer.train(dataset)
eval_dataset = get_eval_data(eval_pdf_paths=eval_pdf_paths)
evaluate(dataset)
# Accuracy: 0.8952380952380953
# Precision: 0.8738738738738738
# Recall: 0.9238095238095239
# F1 Score: 0.8981481481481481