from PIL import Image, ImageDraw, ImageFont import numpy as np import torch from inference import load_model, preprocess_image, predict original_img = Image.open("DUTS-TR-Image/ILSVRC2012_test_00000645.jpg").convert("RGB") background_with_text = original_img.copy() draw = ImageDraw.Draw(background_with_text) font_size = 50 font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeSansBold.ttf", font_size) text = "Hello, world!" text_position = (50, 50) text_color = (255, 255, 255) draw.text(text_position, text, fill=text_color, font=font) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") weights_path = "unet_model.pth" model = load_model(weights_path, device) image_tensor = preprocess_image("DUTS-TR-Image/ILSVRC2012_test_00000645.jpg") mask = predict(model, image_tensor, device) print(mask.shape) mask = mask.squeeze(0) mask_binary = (mask > 0.5).astype(np.uint8) * 255 mask_img = Image.fromarray(mask_binary, mode="L") mask_img = mask_img.resize(original_img.size, resample=Image.NEAREST) original_rgba = original_img.convert("RGBA") r, g, b, _ = original_rgba.split() subject_img = Image.merge("RGBA", (r, g, b, mask_img)) background_with_text.paste(subject_img, (0, 0), subject_img) background_with_text.save("final_output.png")