import os import gradio as gr from PIL import Image, ImageDraw, ImageFont import numpy as np import torch from data import transform_img from inference import load_model, predict device = torch.device("cuda" if torch.cuda.is_available() else "cpu") weights_path = "unet_model.pth" model = load_model(weights_path, device) def hex_to_rgb(hex_color): hex_color = hex_color.lstrip("#") if len(hex_color) == 3: hex_color = "".join([c * 2 for c in hex_color]) return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4)) def process_image(image, text, font_size, text_color): image = image.convert("RGB") print(f"image: {image}") background_with_text = image.copy() draw = ImageDraw.Draw(background_with_text) current_dir = os.path.dirname(__file__) font_path = os.path.join(current_dir, "FreeSansBold.ttf") font = ImageFont.truetype(font_path, font_size) text_position = (50, 50) # text_color = (0, 0, 0) text_color = hex_to_rgb(text_color) draw.text(text_position, text, fill=text_color, font=font) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") weights_path = "unet_model.pth" model = load_model(weights_path, device) transform = transform_img() image_tensor = transform(image).unsqueeze(0) mask = predict(model, image_tensor, device) mask = mask.squeeze(0) mask_binary = (mask > 0.5).astype(np.uint8) * 255 mask_img = Image.fromarray(mask_binary, mode="L") mask_img = mask_img.resize(image.size, resample=Image.NEAREST) original_rgba = image.convert("RGBA") r, g, b, _ = original_rgba.split() subject_img = Image.merge("RGBA", (r, g, b, mask_img)) background_with_text.paste(subject_img, (0, 0), subject_img) return background_with_text interface = gr.Interface( fn=process_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Enter Text"), gr.Slider(10, 70, value=5, step=5, label="Font Size"), gr.ColorPicker(value="#000000", label="Text Color") ], outputs=gr.Image(type="pil", label="Output Image"), title="Text Behind Image Generator", description="Upload an image, enter text, and choose font size to generate the output image." ) interface.launch()