import torch import torch.nn as nn class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ConvBlock, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class UpConv(nn.Module): def __init__(self, in_channels, out_channels): super(UpConv, self).__init__() self.up = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2) def forward(self, x): return self.up(x) class UNet(nn.Module): def __init__(self, in_channels=3, out_channels=1): super(UNet, self).__init__() self.encoder1 = ConvBlock(in_channels, 64) self.encoder2 = ConvBlock(64, 128) self.encoder3 = ConvBlock(128, 256) self.encoder4 = ConvBlock(256, 512) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.bottleneck = ConvBlock(512, 1024) self.upconv4 = UpConv(1024, 512) self.decoder4 = ConvBlock(1024, 512) self.upconv3 = UpConv(512, 256) self.decoder3 = ConvBlock(512, 256) self.upconv2 = UpConv(256, 128) self.decoder2 = ConvBlock(256, 128) self.upconv1 = UpConv(128, 64) self.decoder1 = ConvBlock(128, 64) self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1) def forward(self, x): enc1 = self.encoder1(x) enc2 = self.encoder2(self.pool(enc1)) enc3 = self.encoder3(self.pool(enc2)) enc4 = self.encoder4(self.pool(enc3)) bottleneck = self.bottleneck(self.pool(enc4)) dec4 = self.upconv4(bottleneck) dec4 = torch.cat((enc4, dec4), dim=1) dec4 = self.decoder4(dec4) dec3 = self.upconv3(dec4) dec3 = torch.cat((enc3, dec3), dim=1) dec3 = self.decoder3(dec3) dec2 = self.upconv2(dec3) dec2 = torch.cat((enc2, dec2), dim=1) dec2 = self.decoder2(dec2) dec1 = self.upconv1(dec2) dec1 = torch.cat((enc1, dec1), dim=1) dec1 = self.decoder1(dec1) return self.final_conv(dec1)