|
import gradio as gr |
|
from PIL import Image, ImageDraw, ImageFont |
|
import numpy as np |
|
import torch |
|
from data import transform_img |
|
from inference import load_model, predict |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
weights_path = "unet_model.pth" |
|
model = load_model(weights_path, device) |
|
|
|
def process_image(image, text, font_size): |
|
image = image.convert("RGB") |
|
print(f"image: {image}") |
|
background_with_text = image.copy() |
|
draw = ImageDraw.Draw(background_with_text) |
|
font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeSansBold.ttf", font_size) |
|
text_position = (50, 50) |
|
text_color = (0, 0, 0) |
|
draw.text(text_position, text, fill=text_color, font=font) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
weights_path = "unet_model.pth" |
|
model = load_model(weights_path, device) |
|
transform = transform_img() |
|
image_tensor = transform(image).unsqueeze(0) |
|
mask = predict(model, image_tensor, device) |
|
mask = mask.squeeze(0) |
|
mask_binary = (mask > 0.5).astype(np.uint8) * 255 |
|
mask_img = Image.fromarray(mask_binary, mode="L") |
|
mask_img = mask_img.resize(image.size, resample=Image.NEAREST) |
|
|
|
original_rgba = image.convert("RGBA") |
|
|
|
r, g, b, _ = original_rgba.split() |
|
subject_img = Image.merge("RGBA", (r, g, b, mask_img)) |
|
|
|
background_with_text.paste(subject_img, (0, 0), subject_img) |
|
return background_with_text |
|
|
|
interface = gr.Interface( |
|
fn=process_image, |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload Image"), |
|
gr.Textbox(label="Enter Text"), |
|
gr.Slider(10, 70, value=5, step=5, label="Font Size") |
|
], |
|
outputs=gr.Image(type="pil", label="Output Image"), |
|
title="Text Behind Image Generator", |
|
description="Upload an image, enter text, and choose font size to generate the output image." |
|
) |
|
|
|
interface.launch() |