File size: 2,325 Bytes
5c7e8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import torch
import torch.nn as nn
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UpConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(UpConv, self).__init__()
self.up = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2)
def forward(self, x):
return self.up(x)
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1):
super(UNet, self).__init__()
self.encoder1 = ConvBlock(in_channels, 64)
self.encoder2 = ConvBlock(64, 128)
self.encoder3 = ConvBlock(128, 256)
self.encoder4 = ConvBlock(256, 512)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.bottleneck = ConvBlock(512, 1024)
self.upconv4 = UpConv(1024, 512)
self.decoder4 = ConvBlock(1024, 512)
self.upconv3 = UpConv(512, 256)
self.decoder3 = ConvBlock(512, 256)
self.upconv2 = UpConv(256, 128)
self.decoder2 = ConvBlock(256, 128)
self.upconv1 = UpConv(128, 64)
self.decoder1 = ConvBlock(128, 64)
self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
enc1 = self.encoder1(x)
enc2 = self.encoder2(self.pool(enc1))
enc3 = self.encoder3(self.pool(enc2))
enc4 = self.encoder4(self.pool(enc3))
bottleneck = self.bottleneck(self.pool(enc4))
dec4 = self.upconv4(bottleneck)
dec4 = torch.cat((enc4, dec4), dim=1)
dec4 = self.decoder4(dec4)
dec3 = self.upconv3(dec4)
dec3 = torch.cat((enc3, dec3), dim=1)
dec3 = self.decoder3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((enc2, dec2), dim=1)
dec2 = self.decoder2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((enc1, dec1), dim=1)
dec1 = self.decoder1(dec1)
return self.final_conv(dec1) |