Delete model
Browse files
model/py
DELETED
|
@@ -1,134 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
import lightning
|
| 5 |
-
from safetensors.torch import save_file
|
| 6 |
-
|
| 7 |
-
class Config:
|
| 8 |
-
vocab_size = 50304
|
| 9 |
-
n_epochs = 50
|
| 10 |
-
batch_size = 36
|
| 11 |
-
lr = 3e-4
|
| 12 |
-
wd = 1e-6
|
| 13 |
-
n_embed = 256
|
| 14 |
-
num_blocks = 12
|
| 15 |
-
num_heads = 12
|
| 16 |
-
head_size = n_embed//num_heads
|
| 17 |
-
context_len = 224
|
| 18 |
-
attn_dropout_val = 0.2
|
| 19 |
-
mha_dropout_val = 0.2
|
| 20 |
-
ffn_dropout_val = 0.2
|
| 21 |
-
|
| 22 |
-
class CausalAttentionHead(nn.Module):
|
| 23 |
-
def __init__(self, config):
|
| 24 |
-
super(CausalAttentionHead, self).__init__()
|
| 25 |
-
self.config = config
|
| 26 |
-
|
| 27 |
-
self.query = nn.Linear(config.n_embed, config.head_size, bias=False)
|
| 28 |
-
self.key = nn.Linear(config.n_embed, config.head_size, bias=False)
|
| 29 |
-
self.value = nn.Linear(config.n_embed, config.head_size, bias=False)
|
| 30 |
-
self.attn_drop = nn.Dropout(config.attn_dropout_val)
|
| 31 |
-
# mask for causal attention during training
|
| 32 |
-
self.register_buffer("mask", torch.tril(torch.ones(config.context_len, config.context_len)))
|
| 33 |
-
|
| 34 |
-
def forward(self, x):
|
| 35 |
-
bs, context_len, embed_dim = x.shape
|
| 36 |
-
q, k, v = self.query(x), self.key(x), self.value(x)
|
| 37 |
-
attn_filter = torch.divide(torch.bmm(q, k.transpose(1, 2)), self.config.head_size)
|
| 38 |
-
attn_filter = attn_filter.masked_fill(self.mask[:context_len, :context_len]==0, float("-inf"))
|
| 39 |
-
attn_weights = F.softmax(attn_filter, dim=-1)
|
| 40 |
-
attn_weights = self.attn_drop(attn_weights)
|
| 41 |
-
output = torch.bmm(attn_weights, v)
|
| 42 |
-
return output
|
| 43 |
-
|
| 44 |
-
class MultiHeadedAttention(nn.Module):
|
| 45 |
-
def __init__(self, config):
|
| 46 |
-
super(MultiHeadedAttention, self).__init__()
|
| 47 |
-
self.config = config
|
| 48 |
-
self.heads = nn.ModuleList(
|
| 49 |
-
[CausalAttentionHead(config) for _ in range(config.num_heads)]
|
| 50 |
-
)
|
| 51 |
-
self.proj = nn.Linear(config.num_heads*config.head_size, config.n_embed)
|
| 52 |
-
self.mha_drop = nn.Dropout(config.mha_dropout_val)
|
| 53 |
-
|
| 54 |
-
def forward(self, x):
|
| 55 |
-
mha_output = torch.cat([head(x) for head in self.heads], dim=-1)
|
| 56 |
-
return self.mha_drop(self.proj(mha_output))
|
| 57 |
-
|
| 58 |
-
class FeedForwardNetwork(nn.Module):
|
| 59 |
-
def __init__(self, config):
|
| 60 |
-
super(FeedForwardNetwork, self).__init__()
|
| 61 |
-
|
| 62 |
-
self.ffn = nn.Sequential(
|
| 63 |
-
nn.Linear(config.n_embed, config.n_embed*4),
|
| 64 |
-
nn.GELU(),
|
| 65 |
-
nn.Linear(config.n_embed*4, config.n_embed),
|
| 66 |
-
nn.Dropout()
|
| 67 |
-
)
|
| 68 |
-
def forward(self, x):
|
| 69 |
-
return self.ffn(x)
|
| 70 |
-
|
| 71 |
-
class Block(nn.Module):
|
| 72 |
-
def __init__(self, config):
|
| 73 |
-
super(Block, self).__init__()
|
| 74 |
-
self.mha = MultiHeadedAttention(config)
|
| 75 |
-
self.ln1 = nn.LayerNorm(config.n_embed)
|
| 76 |
-
self.ffn = FeedForwardNetwork(config)
|
| 77 |
-
self.ln2 = nn.LayerNorm(config.n_embed)
|
| 78 |
-
|
| 79 |
-
def forward(self, x):
|
| 80 |
-
x = self.ln1(x+self.mha(x))
|
| 81 |
-
x = self.ln2(x+self.ffn(x))
|
| 82 |
-
return x
|
| 83 |
-
|
| 84 |
-
class GPT(lightning.LightningModule):
|
| 85 |
-
def __init__(self, config):
|
| 86 |
-
super(GPT, self).__init__()
|
| 87 |
-
self.config = config
|
| 88 |
-
self.save_hyperparameters()
|
| 89 |
-
self.token_embedding = nn.Embedding(config.vocab_size, config.n_embed)
|
| 90 |
-
self.positional_embedding = nn.Embedding(config.context_len, config.n_embed)
|
| 91 |
-
self.backbone = nn.Sequential(*[Block(config) for _ in range(config.num_blocks)])
|
| 92 |
-
self.lm_head = nn.Linear(config.n_embed, config.vocab_size)
|
| 93 |
-
|
| 94 |
-
def forward(self, x):
|
| 95 |
-
tok_emb = self.token_embedding(x)
|
| 96 |
-
pos_emb = self.positional_embedding(torch.arange(x.shape[1], device=self.device))
|
| 97 |
-
x = tok_emb+pos_emb
|
| 98 |
-
x = self.backbone(x)
|
| 99 |
-
logits = self.lm_head(x)
|
| 100 |
-
return logits
|
| 101 |
-
|
| 102 |
-
def get_loss(self, predictions, target):
|
| 103 |
-
B, C, V = predictions.shape
|
| 104 |
-
predictions = predictions.view(B*C, V)
|
| 105 |
-
target = target.view(B*C)
|
| 106 |
-
loss = F.cross_entropy(predictions, target)
|
| 107 |
-
return loss
|
| 108 |
-
|
| 109 |
-
def training_step(self, batch, batch_idx):
|
| 110 |
-
text, target = batch
|
| 111 |
-
text = text.long()
|
| 112 |
-
target = target.long()
|
| 113 |
-
logits = self(text)
|
| 114 |
-
loss = self.get_loss(logits, target)
|
| 115 |
-
|
| 116 |
-
self.log('loss', loss.item(), prog_bar=True)
|
| 117 |
-
logs = {'loss': loss}
|
| 118 |
-
|
| 119 |
-
return {"log": logs, "loss": loss}
|
| 120 |
-
|
| 121 |
-
def training_end(self, outputs):
|
| 122 |
-
avg_loss = torch.stack([x['log']['loss'] for x in outputs]).mean()
|
| 123 |
-
logs = {"log": avg_loss}
|
| 124 |
-
print(f"val_loss: {avg_loss}")
|
| 125 |
-
return {"log": logs}
|
| 126 |
-
|
| 127 |
-
def configure_optimizers(self):
|
| 128 |
-
opt = torch.optim.AdamW(self.parameters(), lr=self.config.lr, weight_decay=self.config.wd)
|
| 129 |
-
return [opt], []
|
| 130 |
-
|
| 131 |
-
if __name__ == "__main__":
|
| 132 |
-
config = Config()
|
| 133 |
-
gpt = GPT(config)
|
| 134 |
-
save_file(gpt, "storyGPT.safetensors")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|