File size: 4,690 Bytes
64d28a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
import torch.nn.functional as F
import lightning
from safetensors.torch import save_file

class Config:
    vocab_size = 50304
    n_epochs = 50
    batch_size = 36
    lr = 3e-4
    wd = 1e-6
    n_embed = 256
    num_blocks = 12
    num_heads = 12
    head_size = n_embed//num_heads
    context_len = 224
    attn_dropout_val = 0.2
    mha_dropout_val = 0.2
    ffn_dropout_val = 0.2

class CausalAttentionHead(nn.Module):
    def __init__(self, config):
        super(CausalAttentionHead, self).__init__()
        self.config = config

        self.query = nn.Linear(config.n_embed, config.head_size, bias=False)
        self.key = nn.Linear(config.n_embed, config.head_size, bias=False)
        self.value = nn.Linear(config.n_embed, config.head_size, bias=False)
        self.attn_drop = nn.Dropout(config.attn_dropout_val)
        # mask for causal attention during training
        self.register_buffer("mask", torch.tril(torch.ones(config.context_len, config.context_len)))

    def forward(self, x):
        bs, context_len, embed_dim = x.shape
        q, k, v = self.query(x), self.key(x), self.value(x)
        attn_filter = torch.divide(torch.bmm(q, k.transpose(1, 2)), self.config.head_size)
        attn_filter = attn_filter.masked_fill(self.mask[:context_len, :context_len]==0, float("-inf"))
        attn_weights = F.softmax(attn_filter, dim=-1)
        attn_weights = self.attn_drop(attn_weights)
        output = torch.bmm(attn_weights, v)
        return output

class MultiHeadedAttention(nn.Module):
    def __init__(self, config):
        super(MultiHeadedAttention, self).__init__()
        self.config = config
        self.heads = nn.ModuleList(
            [CausalAttentionHead(config) for _ in range(config.num_heads)]
        )
        self.proj = nn.Linear(config.num_heads*config.head_size, config.n_embed)
        self.mha_drop = nn.Dropout(config.mha_dropout_val)

    def forward(self, x):
        mha_output = torch.cat([head(x) for head in self.heads], dim=-1)
        return self.mha_drop(self.proj(mha_output))

class FeedForwardNetwork(nn.Module):
    def __init__(self, config):
        super(FeedForwardNetwork, self).__init__()

        self.ffn = nn.Sequential(
            nn.Linear(config.n_embed, config.n_embed*4),
            nn.GELU(),
            nn.Linear(config.n_embed*4, config.n_embed),
            nn.Dropout()
        )
    def forward(self, x):
        return self.ffn(x)

class Block(nn.Module):
    def __init__(self, config):
        super(Block, self).__init__()
        self.mha = MultiHeadedAttention(config)
        self.ln1 = nn.LayerNorm(config.n_embed)
        self.ffn = FeedForwardNetwork(config)
        self.ln2 = nn.LayerNorm(config.n_embed)

    def forward(self, x):
        x = self.ln1(x+self.mha(x))
        x = self.ln2(x+self.ffn(x))
        return x

class GPT(lightning.LightningModule):
    def __init__(self, config):
        super(GPT, self).__init__()
        self.config = config
        self.save_hyperparameters()
        self.token_embedding = nn.Embedding(config.vocab_size, config.n_embed)
        self.positional_embedding = nn.Embedding(config.context_len, config.n_embed)
        self.backbone = nn.Sequential(*[Block(config) for _ in range(config.num_blocks)])
        self.lm_head = nn.Linear(config.n_embed, config.vocab_size)

    def forward(self, x):
        tok_emb = self.token_embedding(x)
        pos_emb = self.positional_embedding(torch.arange(x.shape[1], device=self.device))
        x = tok_emb+pos_emb
        x = self.backbone(x)
        logits = self.lm_head(x)
        return logits

    def get_loss(self, predictions, target):
        B, C, V = predictions.shape
        predictions = predictions.view(B*C, V)
        target = target.view(B*C)
        loss = F.cross_entropy(predictions, target)
        return loss

    def training_step(self, batch, batch_idx):
        text, target = batch
        text = text.long()
        target = target.long()
        logits = self(text)
        loss = self.get_loss(logits, target)

        self.log('loss', loss.item(), prog_bar=True)
        logs = {'loss': loss}

        return {"log": logs, "loss": loss}

    def training_end(self, outputs):
        avg_loss = torch.stack([x['log']['loss'] for x in outputs]).mean()
        logs = {"log": avg_loss}
        print(f"val_loss: {avg_loss}")
        return {"log": logs}

    def configure_optimizers(self):
        opt = torch.optim.AdamW(self.parameters(), lr=self.config.lr, weight_decay=self.config.wd)
        return [opt], []

if __name__ == "__main__":
    config = Config() 
    gpt = GPT(config)
    save_file(gpt, "storyGPT.safetensors")