Spaces:
Running
Running
File size: 7,656 Bytes
017b291 50e974c 017b291 50e974c 017b291 50e974c 017b291 97efb84 017b291 97efb84 017b291 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import numpy as np
import json
import torch
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
from PIL import ImageOps
import matplotlib.pyplot as plt
def segmentation(input_img_path):
#with open('face-parsing/config.json', 'r') as file:
# data = json.load(file)
#for key, value in data["id2label"].items():
#print(f"{key}: {value}")
image_processor = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing")
model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
# input_img_path = "akshay kumar img.jpeg"
if isinstance(input_img_path, str): # It's a path
image = Image.open(input_img_path)
else: # It's already an image object
image = input_img_path
image = image.convert("RGB")
# new_size = (128, 128)
# image = image.resize(new_size)
# plt.imshow(image)
# plt.axis("off")
# plt.show()
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
color_map = np.array([
[255, 255, 255], # 0 background
[255, 0, 0], # 1 skin
[0, 255, 0], # 2 nose
[0, 0, 255], # 3 eye_g
[255, 255, 0], # 4 l_eye
[255, 0, 255], # 5 r_eye
[0, 255, 255], # 6 l_brow
[192, 192, 192], # 7 r_brow
[128, 128, 128], # 8 l_ear
[128, 0, 0], # 9 r_ear
[128, 128, 0], # 10 mouth
[0, 128, 0], # 11 u_lip
[0, 128, 128], # 12 l_lip
[0, 0, 128], # 13 hair
[255, 165, 0], # 14 hat
[75, 0, 130], # 15 ear_r
[240, 230, 140], # 16 neck_l
[255, 20, 147], # 17 neck
[100, 149, 237] # 18 cloth
])
predicted_classes = torch.argmax(outputs["logits"], dim=1).squeeze().cpu().numpy()
segmentation_map = color_map[predicted_classes]
outputs["logits"] = outputs["logits"].squeeze()
outputs["logits"].shape
img = np.array(image)
print(img.shape)
print(segmentation_map.shape)
face_mask = outputs["logits"][1]
print(face_mask)
# plt.figure(figsize=(15, 7))
# plt.subplot(1, 2, 1)
# plt.title("Original Image")
# plt.imshow(image)
# plt.axis('off')
# plt.subplot(1, 2, 2)
# plt.title("Predicted Segmentation Map")
# plt.imshow(segmentation_map)
# plt.axis('off')
# plt.show()
new_size = (128, 128)
image = image.resize(new_size)
original_image_np = np.array(image)
segmented_image_np = np.array(segmentation_map)
skin_color = [255, 0, 0]
eyeg_color = [0, 0, 255]
nose_color = [0, 255, 0]
leye_color = [255, 255, 0]
reye_color = [255, 0, 255]
lbrow_color = [0, 255, 255]
rbrow_color = [192, 192, 192]
lear_color = [128, 128, 128]
rear_color = [128, 0, 0]
mouth_color = [128, 128, 0]
ulip_color = [0, 128, 0]
llip_color = [0, 128, 128]
hair_color = [0, 0, 128]
hat_color = [255, 165, 0]
neck_color = [255, 20, 147]
skin_mask = np.all(segmented_image_np == skin_color, axis=-1)
eyeg_mask = np.all(segmented_image_np == eyeg_color, axis=-1)
nose_mask = np.all(segmented_image_np == nose_color, axis=-1)
leye_mask = np.all(segmented_image_np == leye_color, axis=-1)
reye_mask = np.all(segmented_image_np == reye_color, axis=-1)
lbrow_mask = np.all(segmented_image_np == lbrow_color, axis=-1)
rbrow_mask = np.all(segmented_image_np == rbrow_color, axis=-1)
lear_mask = np.all(segmented_image_np == lear_color, axis=-1)
rear_mask = np.all(segmented_image_np == rear_color, axis=-1)
mouth_mask = np.all(segmented_image_np == mouth_color, axis=-1)
ulip_mask = np.all(segmented_image_np == ulip_color, axis=-1)
llip_mask = np.all(segmented_image_np == llip_color, axis=-1)
hair_mask = np.all(segmented_image_np == hair_color, axis=-1)
hat_mask = np.all(segmented_image_np == hat_color, axis=-1)
neck_mask = np.all(segmented_image_np == neck_color, axis=-1)
# combining all the masks
combined_mask = np.logical_or.reduce((
skin_mask, eyeg_mask, nose_mask, leye_mask, reye_mask,
lbrow_mask, rbrow_mask, lear_mask, rear_mask,
mouth_mask, ulip_mask, llip_mask, hair_mask,
hat_mask, neck_mask
))
# applying the combined mask to the original image
selected_regions = np.full_like(original_image_np, 255)
selected_regions[combined_mask] = original_image_np[combined_mask]
# # Visualize the results
# plt.figure(figsize=(15, 5))
# # Display the original image
# plt.subplot(1, 3, 1)
# plt.imshow(image)
# plt.title("Original Image")
# plt.axis("off")
# # Display the segmented image
# plt.subplot(1, 3, 2)
# plt.imshow(segmentation_map)
# plt.title("Segmented Image")
# plt.axis("off")
# # Display the extracted regions
# plt.subplot(1, 3, 3)
# plt.imshow(Image.fromarray(selected_regions))
# plt.title("Selected Regions")
# plt.axis("off")
# plt.tight_layout()
# plt.show()
selected_regions = Image.fromarray(selected_regions)
# selected_regions.save("only_face.jpg")
return selected_regions
"""challenges as of now:
1. meme face image is not eradicated (manually remove this). (done!)
2. note down the width of the neck of meme image and make adjustements accordingly so that the target face gets fixed on the meme image. (pending)
3. background in the person's image is black, which is messing up with hair, fix that.
"""
def integration_with_meme(input_img_path, face_x, face_y, face_width, face_height, flip):
person_image = segmentation(input_img_path)
# person_image = Image.open('only_face.jpg')
meme_image = Image.open('chillguy.jpeg')
# Convert meme image to RGBA (for transparency handling) and to a NumPy array
meme_image = meme_image.convert("RGBA")
meme_data = np.array(meme_image)
# Define the coordinates of the face region in the meme image
# face_x, face_y, face_width, face_height = 0, 40, 180, 110 # Adjust based on meme image
# Clamp the face region to ensure it is within bounds
meme_height, meme_width = meme_data.shape[:2]
face_width = min(face_width, meme_width - face_x)
face_height = min(face_height, meme_height - face_y)
# Resize the person's image to fit the face region
person_resized = person_image.resize((face_width, face_height)).convert("RGBA")
if flip:
person_resized = ImageOps.mirror(person_resized)
person_data = np.array(person_resized)
r, g, b, a = person_data[..., 0], person_data[..., 1], person_data[..., 2], person_data[..., 3]
white_areas = (r > 230) & (g > 230) & (b > 230)
person_data[white_areas, 3] = 0
person_resized = Image.fromarray(person_data)
face_region = meme_data[face_y:face_y+face_height, face_x:face_x+face_width]
face_region_resized = Image.fromarray(face_region).resize((face_width, face_height))
blended_region = Image.alpha_composite(face_region_resized, person_resized)
blended_region_data = np.array(blended_region)
meme_data[face_y:face_y+face_height, face_x:face_x+face_width] = blended_region_data
result_image = Image.fromarray(meme_data)
# plt.imshow(result_image)
# plt.axis("off")
# plt.show()
meme_image = np.array(meme_image)
print(meme_image.shape)
result_image = np.array(result_image)
print(result_image.shape)
return result_image
# integration_with_meme(input_img_path="akshay kumar img.jpeg", face_x=0, face_y=40, face_width=180, face_height=110)
|