File size: 7,656 Bytes
017b291
 
 
 
 
 
 
 
 
50e974c
 
017b291
50e974c
 
017b291
50e974c
 
017b291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97efb84
017b291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97efb84
 
017b291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
import json
import torch
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
from PIL import ImageOps
import matplotlib.pyplot as plt

def segmentation(input_img_path):
    #with open('face-parsing/config.json', 'r') as file:
     #   data = json.load(file)

    #for key, value in data["id2label"].items():
        #print(f"{key}: {value}")

    image_processor = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing")
    model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")

    # input_img_path = "akshay kumar img.jpeg"
    if isinstance(input_img_path, str):  # It's a path
        image = Image.open(input_img_path)
    else:  # It's already an image object
        image = input_img_path
        
    image = image.convert("RGB")

    # new_size = (128, 128)
    # image = image.resize(new_size)
    # plt.imshow(image)
    # plt.axis("off")
    # plt.show()

    inputs = image_processor(images=image, return_tensors="pt")
    outputs = model(**inputs)

    color_map = np.array([
        [255, 255, 255],  # 0 background
        [255, 0, 0],      # 1 skin
        [0, 255, 0],      # 2 nose
        [0, 0, 255],      # 3 eye_g
        [255, 255, 0],    # 4 l_eye
        [255, 0, 255],    # 5 r_eye
        [0, 255, 255],    # 6 l_brow
        [192, 192, 192],  # 7 r_brow
        [128, 128, 128],  # 8 l_ear
        [128, 0, 0],      # 9 r_ear
        [128, 128, 0],    # 10 mouth
        [0, 128, 0],      # 11 u_lip
        [0, 128, 128],    # 12 l_lip
        [0, 0, 128],      # 13 hair
        [255, 165, 0],    # 14 hat
        [75, 0, 130],     # 15 ear_r
        [240, 230, 140],  # 16 neck_l
        [255, 20, 147],   # 17 neck
        [100, 149, 237]   # 18 cloth
    ])

    predicted_classes = torch.argmax(outputs["logits"], dim=1).squeeze().cpu().numpy()
    segmentation_map = color_map[predicted_classes]

    outputs["logits"] = outputs["logits"].squeeze()
    outputs["logits"].shape

    img = np.array(image)
    print(img.shape)
    print(segmentation_map.shape)

    face_mask = outputs["logits"][1]
    print(face_mask)

    # plt.figure(figsize=(15, 7))
    # plt.subplot(1, 2, 1)
    # plt.title("Original Image")
    # plt.imshow(image)
    # plt.axis('off')

    # plt.subplot(1, 2, 2)
    # plt.title("Predicted Segmentation Map")
    # plt.imshow(segmentation_map)
    # plt.axis('off')

    # plt.show()

    new_size = (128, 128)
    image = image.resize(new_size)
    original_image_np = np.array(image)
    segmented_image_np = np.array(segmentation_map)

    skin_color = [255, 0, 0]
    eyeg_color = [0, 0, 255]
    nose_color = [0, 255, 0]
    leye_color = [255, 255, 0]
    reye_color = [255, 0, 255]
    lbrow_color = [0, 255, 255]
    rbrow_color = [192, 192, 192]
    lear_color = [128, 128, 128]
    rear_color = [128, 0, 0]
    mouth_color = [128, 128, 0]
    ulip_color = [0, 128, 0]
    llip_color = [0, 128, 128]
    hair_color = [0, 0, 128]
    hat_color = [255, 165, 0]
    neck_color = [255, 20, 147]

    skin_mask = np.all(segmented_image_np == skin_color, axis=-1)
    eyeg_mask = np.all(segmented_image_np == eyeg_color, axis=-1)
    nose_mask = np.all(segmented_image_np == nose_color, axis=-1)
    leye_mask = np.all(segmented_image_np == leye_color, axis=-1)
    reye_mask = np.all(segmented_image_np == reye_color, axis=-1)
    lbrow_mask = np.all(segmented_image_np == lbrow_color, axis=-1)
    rbrow_mask = np.all(segmented_image_np == rbrow_color, axis=-1)
    lear_mask = np.all(segmented_image_np == lear_color, axis=-1)
    rear_mask = np.all(segmented_image_np == rear_color, axis=-1)
    mouth_mask = np.all(segmented_image_np == mouth_color, axis=-1)
    ulip_mask = np.all(segmented_image_np == ulip_color, axis=-1)
    llip_mask = np.all(segmented_image_np == llip_color, axis=-1)
    hair_mask = np.all(segmented_image_np == hair_color, axis=-1)
    hat_mask = np.all(segmented_image_np == hat_color, axis=-1)
    neck_mask = np.all(segmented_image_np == neck_color, axis=-1)

    # combining all the masks
    combined_mask = np.logical_or.reduce((
        skin_mask, eyeg_mask, nose_mask, leye_mask, reye_mask,
        lbrow_mask, rbrow_mask, lear_mask, rear_mask,
        mouth_mask, ulip_mask, llip_mask, hair_mask,
        hat_mask, neck_mask
    ))

    # applying the combined mask to the original image
    selected_regions = np.full_like(original_image_np, 255)

    selected_regions[combined_mask] = original_image_np[combined_mask]

    # # Visualize the results
    # plt.figure(figsize=(15, 5))

    # # Display the original image
    # plt.subplot(1, 3, 1)
    # plt.imshow(image)
    # plt.title("Original Image")
    # plt.axis("off")

    # # Display the segmented image
    # plt.subplot(1, 3, 2)
    # plt.imshow(segmentation_map)
    # plt.title("Segmented Image")
    # plt.axis("off")

    # # Display the extracted regions
    # plt.subplot(1, 3, 3)
    # plt.imshow(Image.fromarray(selected_regions))
    # plt.title("Selected Regions")
    # plt.axis("off")

    # plt.tight_layout()
    # plt.show()

    selected_regions = Image.fromarray(selected_regions)
    # selected_regions.save("only_face.jpg")
    return selected_regions

"""challenges as of now:
1. meme face image is not eradicated (manually remove this). (done!)
2. note down the width of the neck of meme image and make adjustements accordingly so that the target face gets fixed on the meme image. (pending)
3. background in the person's image is black, which is messing up with hair, fix that.
"""

def integration_with_meme(input_img_path, face_x, face_y, face_width, face_height, flip):

    person_image = segmentation(input_img_path)
    # person_image = Image.open('only_face.jpg')
    meme_image = Image.open('chillguy.jpeg')

    # Convert meme image to RGBA (for transparency handling) and to a NumPy array
    meme_image = meme_image.convert("RGBA")
    meme_data = np.array(meme_image)

    # Define the coordinates of the face region in the meme image
    # face_x, face_y, face_width, face_height = 0, 40, 180, 110  # Adjust based on meme image

    # Clamp the face region to ensure it is within bounds
    meme_height, meme_width = meme_data.shape[:2]
    face_width = min(face_width, meme_width - face_x)
    face_height = min(face_height, meme_height - face_y)

    # Resize the person's image to fit the face region
    person_resized = person_image.resize((face_width, face_height)).convert("RGBA")

    if flip:
        person_resized = ImageOps.mirror(person_resized)

    person_data = np.array(person_resized)

    r, g, b, a = person_data[..., 0], person_data[..., 1], person_data[..., 2], person_data[..., 3]
    white_areas = (r > 230) & (g > 230) & (b > 230)
    person_data[white_areas, 3] = 0

    person_resized = Image.fromarray(person_data)

    face_region = meme_data[face_y:face_y+face_height, face_x:face_x+face_width]

    face_region_resized = Image.fromarray(face_region).resize((face_width, face_height))

    blended_region = Image.alpha_composite(face_region_resized, person_resized)

    blended_region_data = np.array(blended_region)
    meme_data[face_y:face_y+face_height, face_x:face_x+face_width] = blended_region_data

    result_image = Image.fromarray(meme_data)

    # plt.imshow(result_image)
    # plt.axis("off")
    # plt.show()

    meme_image = np.array(meme_image)
    print(meme_image.shape)
    result_image = np.array(result_image)
    print(result_image.shape)
    return result_image

# integration_with_meme(input_img_path="akshay kumar img.jpeg", face_x=0, face_y=40, face_width=180, face_height=110)