streamlit_app / src /data_preprocessing.py
Sarathkumar1304ai's picture
all files
92b63f0 verified
raw
history blame
3.69 kB
import pandas as pd
import logging
import os
from sklearn.preprocessing import LabelEncoder
# Set up logging configuration
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class DataPreprocessor:
def __init__(self, data: pd.DataFrame):
"""
Initializes the DataPreprocessor with data.
Parameters:
data : pd.DataFrame
The customer churn data to preprocess.
"""
self.data = data
self.label_encoders = {}
logging.info("DataPreprocessor initialized with data of shape: %s", data.shape)
def drop_customer_id(self):
"""Drop the CustomerID column if it exists in the DataFrame."""
if 'CustomerID' in self.data.columns:
self.data.drop(columns=['CustomerID'], inplace=True)
logging.info("Dropped CustomerID column.")
else:
logging.warning("CustomerID column not found.")
def drop_null_values(self):
"""Drop rows with any null values in the DataFrame."""
null_count = self.data.isnull().sum().sum()
if null_count > 0:
self.data.dropna(inplace=True)
logging.info("Dropped %d rows with null values.", null_count)
else:
logging.info("No null values to drop.")
def encode_categorical_columns(self):
"""
Encode categorical features: Subscription Type and Contract Length.
Uses LabelEncoder for each specified column.
"""
for column in ['Subscription Type', 'Contract Length']:
if column in self.data.columns:
le = LabelEncoder()
self.data[column] = le.fit_transform(self.data[column].astype(str))
self.label_encoders[column] = le
logging.info("Encoded %s with labels: %s", column, le.classes_)
else:
logging.warning("%s column not found for encoding.", column)
def map_gender(self):
"""Map Gender to binary values: Male - 1, Female - 0."""
if 'Gender' in self.data.columns:
self.data['Gender'] = self.data['Gender'].map({'Male': 1, 'Female': 0})
logging.info("Mapped Gender: Male - 1, Female - 0.")
else:
logging.warning("Gender column not found for mapping.")
def save_processed_data(self, output_directory='processed_data', filename='processed_data.csv'):
"""
Save the processed data to a CSV file.
Parameters:
-----------
output_directory : str, optional
The directory to save the processed data (default is 'processed_data').
filename : str, optional
The name of the output CSV file (default is 'processed_data.csv').
"""
os.makedirs(output_directory, exist_ok=True)
processed_csv_path = os.path.join(output_directory, filename)
self.data.to_csv(processed_csv_path, index=False)
logging.info("Processed data saved to %s", processed_csv_path)
def process_data(self) -> pd.DataFrame:
"""Execute the full preprocessing pipeline and return the processed DataFrame."""
self.drop_customer_id()
self.drop_null_values()
self.encode_categorical_columns()
self.map_gender()
self.save_processed_data()
logging.info("Data preprocessing completed.")
return self.data
# Usage Example
if __name__ == '__main__':
# df = pd.read_csv("extracted/customer_churn_dataset-training-master.csv")
# preprocessor = DataPreprocessor(df)
# cleaned_df = preprocessor.process_data()
# print(cleaned_df.head())
pass