streamlit_app / pipelines /training_pipeline.py
Sarathkumar1304ai's picture
all files
92b63f0 verified
raw
history blame
2.06 kB
from zenml import pipeline
from zenml import Model
from steps.data_ingestion_step import data_ingestion_step
from steps.data_preprocessing_step import data_preprocessing_step
from steps.outlier_detection_step import outlier_detection_step
from steps.data_splitting_step import data_splitter_step
from steps.model_building_step import model_builder_step
from steps.model_evaluation_step import model_evaluation_step
import logging
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="mlflow")
# logging.basicConfig(
# level=logging.INFO, # Set the logging level to INFO
# format='%(asctime)s - %(levelname)s - %(message)s',
# handlers=[
# logging.FileHandler("logging.log"), # Log to a file
# logging.StreamHandler() # Also log to console
# ]
# )
@pipeline(
model=Model(
name="customer_churn_prediction",
)
)
def training_pipeline():
"""Defines an end-to-end machine learning pipeline for customer churn prediction."""
"""Defines an end-to-end machine learning pipeline."""
# Data Ingestion Step
# Load raw data from the specified file path
raw_data = data_ingestion_step("/home/sarath_kumar/customer_chrun_prediction/data/customer_churn_dataset-training-master.csv.zip")
# Data Preprocessing Step
# Preprocess the raw data to clean and format it appropriately
cleaned_data = data_preprocessing_step(raw_data)
# Outlier Detection Step
outlier_removed_data = outlier_detection_step(cleaned_data)
# Data Splitting Step
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = data_splitter_step(outlier_removed_data, target_column="Churn")
# Model Building Step
# Build and train the model using the training data
model = model_builder_step(model_name="xgboost", X_train=X_train, y_train=y_train)
metrics = model_evaluation_step(model, X_test, y_test)
# Return the trained model
return model
if __name__ == "__main__":
training_pipeline()