File size: 10,351 Bytes
92b63f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import plotly.express as px
import streamlit as st
import pandas as pd
import numpy as np
import itertools
from scipy.stats import pearsonr, pointbiserialr
from sklearn.ensemble import RandomForestClassifier
import seaborn as sns
import matplotlib.pyplot as plt

# def univariate_analysis(data, column, plot_type):
#     if plot_type == "Histogram":
#         if data[column].dtype=="int64" or data[column].dtype=="float64":
#             fig = px.histogram(data, x=column, title=f'Histogram of {column}')
#             st.plotly_chart(fig)
#         else:
#             st.warning("Histograms are only suitable for numerical columns.")

#     elif plot_type == "Boxplot":
#         if data[column].dtype=="int64" or data[column].dtype=="float64":
#             fig = px.box(data, y=column, title=f'Boxplot of {column}')
#             st.plotly_chart(fig)
#         else:
#             st.warning("Boxplots are only suitable for numerical columns.")
#     elif plot_type == "Pie Chart":
#         if data[column].dtype == 'object' or pd.api.types.is_categorical_dtype(data[column]):
#             fig = px.pie(data, names=column, title=f'Pie Chart of {column}')
#             st.plotly_chart(fig)
#         else:
#             st.warning("Pie charts are only suitable for categorical columns.")
#     elif plot_type == "Bar Plot":
#         if data[column].dtype == 'object' or pd.api.types.is_categorical_dtype(data[column]):
#             fig = px.bar(data[column].value_counts().reset_index(), x='index', y=column, title=f'Bar Plot of {column}')
#             st.plotly_chart(fig)
#         else:
#             st.warning("Bar plots are only suitable for categorical columns.")

import pandas as pd
import plotly.express as px
import streamlit as st

def univariate_analysis(data, column, plot_type):
    if plot_type == "Histogram":
        if data[column].dtype == "int64" or data[column].dtype == "float64":
            fig = px.histogram(data, x=column, title=f'Histogram of {column}')
            st.plotly_chart(fig)
        else:
            st.warning("Histograms are only suitable for numerical columns.")

    elif plot_type == "Boxplot":
        if data[column].dtype == "int64" or data[column].dtype == "float64":
            fig = px.box(data, y=column, title=f'Boxplot of {column}')
            st.plotly_chart(fig)
        else:
            st.warning("Boxplots are only suitable for numerical columns.")
            
    elif plot_type == "Pie Chart":
        if data[column].dtype == 'object' or pd.api.types.is_categorical_dtype(data[column]):
            fig = px.pie(data, names=column, title=f'Pie Chart of {column}')
            st.plotly_chart(fig)
        else:
            st.warning("Pie charts are only suitable for categorical columns.")
            
    elif plot_type == "Bar Plot":
        if data[column].dtype == 'object' or pd.api.types.is_categorical_dtype(data[column]):
            # Get value counts and reset index, then rename columns for Plotly
            data_count = data[column].value_counts().reset_index()
            data_count.columns = ['index', column]  # Renaming columns
            
            fig = px.bar(data_count, x='index', y=column, title=f'Bar Plot of {column}')
            st.plotly_chart(fig)
        else:
            st.warning("Bar plots are only suitable for categorical columns.")


# def multivariate_analysis(data, columns):
#     fig = px.scatter_matrix(data, dimensions=columns, title=f'Multivariate Analysis')
#     st.plotly_chart(fig)


def multivariate_analysis(data, columns, plot_type):
    if plot_type == "Correlation Heatmap":
        st.subheader("Correlation Heatmap")
        if len(columns) > 1:
            # Compute the correlation matrix
            correlation_matrix = data[columns].corr()

            # Create a heatmap using Seaborn and Matplotlib
            fig, ax = plt.subplots(figsize=(10, 8))
            sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", vmin=-1, vmax=1, ax=ax)
            st.pyplot(fig)
        else:
            st.warning("Please select at least two columns for a correlation heatmap.")

    elif plot_type == "Scatter Matrix":
        st.subheader("Scatter Matrix Plot")
        if len(columns) > 1:
            fig = px.scatter_matrix(data, dimensions=columns, title='Scatter Matrix Plot')
            st.plotly_chart(fig)
        else:
            st.warning("Please select at least two columns for a scatter plot matrix.")



class BivariateAnalysis:
    def numerical_vs_numerical(self, data, column_x, column_y, plot_type):
        plt.figure(figsize=(10, 6))
        if plot_type == "Scatter Plot":
            if data[column_x].dtype == 'int64' or data[column_x].dtype == 'float64' and data[column_y].dtype == 'int64' or data[column_y].dtype == 'float64':
                sns.scatterplot(data=data, x=column_x, y=column_y)
                plt.title(f'Scatter Plot of {column_x} vs {column_y}')
            else:
                st.warning("Scatter plots are only suitable for numerical columns.")

        elif plot_type == "Bar Plot":
            if data[column_x].dtype == 'object' or pd.api.types.is_categorical_dtype(data[column_x]) and data[column_y].dtype == 'object' or pd.api.types.is_categorical_dtype(data[column_y]):
                sns.barplot(data=data, x=column_x, y=column_y)
                plt.title(f'Bar Plot of {column_x} vs {column_y}')
            else:
                st.warning("Bar plots are only suitable for categorical columns.")
        elif plot_type == "Boxplot":
            if data[column_x].dtype == 'int64' or data[column_x].dtype == 'float64' and data[column_y].dtype == 'int64' or data[column_y].dtype == 'float64':
                sns.boxplot(data=data, x=column_x, y=column_y)
                plt.title(f'Boxplot of {column_x} vs {column_y}')
            else:
                st.warning("Boxplots are only suitable for numerical columns.")
        st.pyplot(plt.gcf())
        plt.clf()  


    
    def numerical_vs_categorical(df, categorical_feature='Churn'):
        numerical_features = df.select_dtypes(include=[float, int]).columns
        if df[categorical_feature].nunique() != 2:
            print(f"The categorical feature '{categorical_feature}' is not binary. Skipping correlation calculation.")
            for feature in numerical_features:
                fig = px.box(
                    df, x=categorical_feature, y=feature, color=categorical_feature,
                    title=f"Box Plot of {feature} by {categorical_feature}",
                    labels={categorical_feature: categorical_feature, feature: feature}
                )
                fig.update_layout(
                    xaxis_title=categorical_feature,
                    yaxis_title=feature,
                    hovermode="x unified"
                )
                fig.show()
            return

        df[categorical_feature] = pd.factorize(df[categorical_feature])[0]
        for feature in numerical_features:
            valid_data = df[[feature, categorical_feature]].dropna()
            valid_data[feature] = pd.to_numeric(valid_data[feature], errors='coerce').dropna()
            correlation, _ = pointbiserialr(valid_data[feature], valid_data[categorical_feature])
            title = f"Box Plot of {feature} by {categorical_feature} (Correlation: {correlation:.2f})"
            fig = px.box(
                valid_data, x=categorical_feature, y=feature, color=categorical_feature,
                title=title,
                labels={categorical_feature: categorical_feature, feature: feature}
            )
            fig.update_layout(
                xaxis_title=categorical_feature,
                yaxis_title=feature,
                hovermode="x unified"
            )
            fig.show()

    
    def numerical_vs_target(df, target='Churn'):
        numerical_features = df.select_dtypes(include=[float, int]).columns
        for feature in numerical_features:
            fig = px.box(
                df, 
                x=target,  
                y=feature,  
                color=target,  
                title=f"Distribution of {feature} by {target} Status",
                labels={target: f"{target} Status", feature: feature}
            )
            fig.update_layout(
                xaxis_title=f"{target} Status",
                yaxis_title=feature,
                legend_title=target,
                hovermode="x unified"
            )
            fig.show()

    
    def categorical_vs_target(df, target='Churn'):
        categorical_features = df.select_dtypes(include=[object]).columns
        for feature in categorical_features:
            crosstab_data = pd.crosstab(df[feature], df[target])
            crosstab_df = crosstab_data.reset_index().melt(id_vars=feature, value_name="Count")
            fig = px.bar(
                crosstab_df, 
                x=feature, 
                y="Count", 
                color=target,
                title=f"{target} by {feature}",
                labels={feature: feature, "Count": "Count", target: f"{target} Status"},
                text="Count",
                barmode="group"
            )
            fig.update_layout(
                xaxis_title=feature,
                yaxis_title="Count",
                legend_title=target,
                hovermode="x unified"
            )
            fig.show()

    def feature_importance(df, target_column):
        X = df.drop(columns=[target_column])
        y = df[target_column]

        model = RandomForestClassifier(random_state=0)
        model.fit(X.select_dtypes(include=[np.number]), y)

        importance_df = pd.DataFrame({
            "Feature": X.select_dtypes(include=[np.number]).columns,
            "Importance": model.feature_importances_
        }).sort_values(by="Importance", ascending=True)

        fig_importance = px.bar(
            importance_df,
            x="Importance",
            y="Feature",
            title="Feature Importance",
            orientation="h",
            color="Importance",
            color_continuous_scale="Viridis",
        )
        fig_importance.update_layout(
            title_font=dict(size=20),
            xaxis_title="Importance Score",
            yaxis_title="Features",
            font=dict(size=12),
        )
        fig_importance.show()