|
import streamlit as st |
|
from src.resume_parser import ResumeParser |
|
from generate_questions.questions_generator import QuestionGenerator |
|
import google.generativeai as genai |
|
import os |
|
from src.greetings import end_conversation,start_greeting |
|
import json |
|
from src.feedback import feed_back |
|
|
|
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) |
|
model = genai.GenerativeModel("gemini-pro") |
|
|
|
chat = model.start_chat(history=[]) |
|
resume_parser = ResumeParser() |
|
questions_generator = QuestionGenerator() |
|
|
|
|
|
class ResumeUploader: |
|
def resume_upload(self): |
|
st.title("TalentScout - Hiring Assistant Chatbot") |
|
start_greeting() |
|
st.sidebar.title("Candidate Details") |
|
|
|
if "tech_stack" not in st.session_state: |
|
st.session_state.tech_stack = [] |
|
if "questions" not in st.session_state: |
|
st.session_state.questions = {} |
|
if "answers" not in st.session_state: |
|
st.session_state.answers = {} |
|
|
|
uploaded_file = st.sidebar.file_uploader("Upload Resume (PDF):", type=["pdf"]) |
|
if uploaded_file: |
|
candidate_details = resume_parser.parse(uploaded_file) |
|
st.success("Resume uploaded and processed successfully!") |
|
st.write("### Candidate Information") |
|
st.write(f"**Name:** {candidate_details['name']}") |
|
st.write(f"**Email:** {candidate_details['email']}") |
|
st.write(f"**Phone:** {candidate_details['phone']}") |
|
st.write(f"**Experience:** {candidate_details['experience']}") |
|
st.write(f"**Position:** {candidate_details['position']}") |
|
st.write(f"**Location:** {candidate_details['location']}") |
|
st.write(f"**Tech Stack:** {', '.join(candidate_details['tech_stack'])}") |
|
st.session_state.tech_stack = candidate_details["tech_stack"][:5] |
|
|
|
if st.session_state.tech_stack: |
|
st.write("**Based on your Top 5 skills ,we generate Technical Question , you need to answer the question .If you are ready please click Generate Questions button**") |
|
if st.button("Generate Questions"): |
|
for tech in st.session_state.tech_stack: |
|
tech = tech.strip() |
|
if tech not in st.session_state.questions: |
|
questions = questions_generator.generate_questions(chat, tech) |
|
st.session_state.questions[tech] = questions.split("\n") |
|
st.session_state.answers[tech] = [""] * len(st.session_state.questions[tech]) |
|
|
|
|
|
if st.session_state.questions: |
|
for tech, questions in st.session_state.questions.items(): |
|
st.write(f"### Technical Questions for {tech}") |
|
for idx, question in enumerate(questions): |
|
st.write(f"{idx + 1}. {question}") |
|
st.session_state.answers[tech][idx] = st.text_area( |
|
f"Answer for Q{idx + 1} ({tech})", |
|
value=st.session_state.answers[tech][idx], |
|
key=f"answer_{tech}_{idx}",) |
|
|
|
if st.button("Submit Answers"): |
|
|
|
greets = end_conversation() |
|
st.write(greets) |
|
output_data = [] |
|
for tech, questions in st.session_state.questions.items(): |
|
for idx, question in enumerate(questions): |
|
output_data.append({ |
|
"tech": tech, |
|
"question": question, |
|
"answer": st.session_state.answers[tech][idx] |
|
}) |
|
|
|
|
|
json_filename = "questions_answers.json" |
|
with open(json_filename, "w") as json_file: |
|
json.dump(output_data, json_file, indent=4) |
|
feed_back() |