import streamlit as st import pandas as pd import requests import joblib import json import os import numpy as np from sklearn.decomposition import PCA # Load local model components pca_path = "models/pca.pkl" local_model_path = "models/model.pkl" # Load models if they exist pca = joblib.load(pca_path) if os.path.exists(pca_path) else None local_model = joblib.load(local_model_path) if os.path.exists(local_model_path) else None # MLflow Server Endpoint MLFLOW_SERVER_URL = "http://127.0.0.1:8000/invocations" # Streamlit UI st.title("Imago AI Vomitoxin Prediction System") st.write("Upload a CSV file to predict vomitoxin levels in corn samples.") # Upload CSV File uploaded_file = st.file_uploader("Upload CSV File", type=["csv"]) # Prediction Function def predict(data): """Predict using MLflow server if available, else use local model.""" # Try MLflow first try: st.write("Checking MLflow Server...") # Convert data to JSON format for MLflow json_data = json.dumps({"inputs": df.to_numpy().tolist()}) # Convert to NumPy first # Send request to MLflow response = requests.post(MLFLOW_SERVER_URL, json={"inputs": json_data}) # If successful, return MLflow prediction if response.status_code == 200: predictions = response.json() st.success("Prediction done using MLflow Server!") return np.array(predictions) else: st.warning("MLflow Server not responding. Falling back to local model.") except requests.exceptions.RequestException: st.warning("MLflow Server is not running. Using local model.") # If MLflow fails, use local model if local_model and pca: # Apply Scaling & PCA # scaled_data = scaler.transform(data) pca_data = pca.transform(data) # Predict with local model predictions = local_model.predict(pca_data) st.success("Prediction done using Local Model!") return predictions else: st.error("No model available for prediction.") return None # Process File & Predict if uploaded_file: try: # Read CSV df = pd.read_csv(uploaded_file) # Ensure required columns exist if "hsi_id" not in df.columns: st.error("CSV file must contain `hsi_id` column.") else: # Extract Features (Drop hsi_id) X = df.drop(columns=["hsi_id"]) # Make Predictions predictions = predict(X) if predictions is not None: # Create output DataFrame df["vomitoxin_ppb"] = predictions # Mark Harmful Cases (vomitoxin > 1000) df["Harmful"] = df["vomitoxin_ppb"].apply(lambda x: "⚠️ Yes" if x > 1000 else "✅ No") # Display DataFrame st.subheader("Prediction Results") st.write(df[["hsi_id", "vomitoxin_ppb", "Harmful"]]) # Highlight Harmful Cases st.subheader("Harmful Cases") harmful_df = df[df["vomitoxin_ppb"] > 1000] st.write(harmful_df[["hsi_id", "vomitoxin_ppb"]]) except Exception as e: st.error(f"Error processing file: {e}")