|
from transformers import pipeline |
|
import gradio as gr |
|
|
|
Clasification = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-news-article-classification') |
|
|
|
|
|
def classification_fun(news_article): |
|
results = Clasification(news_article) |
|
return results[0]['label'], results[0]['score'] |
|
|
|
|
|
custom_css = """ |
|
textarea, .gradio-output { |
|
direction: rtl; |
|
# background-color: black; |
|
# color: white; |
|
border: 2px solid #800020; |
|
border-radius: 5px; |
|
padding: 10px; |
|
} |
|
|
|
label { |
|
font-size: 18px; |
|
font-weight: bold; |
|
text-align: center; |
|
background-color: #800020; |
|
color: white; |
|
box-shadow: 2px 2px 5px rgba(0,0,0,0.2); |
|
padding: 5px; |
|
display: block; |
|
margin: 10px 0; |
|
} |
|
|
|
.gradio-container { |
|
background-color: black; |
|
padding: 20px; |
|
box-sizing: border-box; |
|
} |
|
""" |
|
|
|
my_model = gr.Interface( |
|
fn=classification_fun, |
|
inputs=gr.Textbox(label="News Articles", lines=10, placeholder="Enter your Article"), |
|
outputs=[gr.Textbox(label="Label of the Article"), gr.Number(label="Confidence Score")], |
|
css=custom_css |
|
) |
|
|
|
my_model.launch() |