import os from SPPE.src.main_fast_inference import * from dataloader import ImageLoader, DetectionLoader, DetectionProcessor, DataWriter, Mscoco from fn import getTime from opt import opt from pPose_nms import write_json from tqdm import tqdm def main(args): inputpath = args.inputpath inputlist = args.inputlist mode = args.mode if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) if len(inputlist): im_names = open(inputlist, 'r').readlines() elif len(inputpath) and inputpath != '/': for root, dirs, files in os.walk(inputpath): im_names = files else: raise IOError('Error: must contain either --indir/--list') # Load input images data_loader = ImageLoader(im_names, batchSize=args.detbatch, format='yolo').start() # Load detection loader print('Loading YOLO model..') sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() det_processor = DetectionProcessor(det_loader).start() # Load pose model pose_dataset = Mscoco() if args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset) pose_model pose_model.eval() runtime_profile = { 'dt': [], 'pt': [], 'pn': [] } # Init data writer writer = DataWriter(args.save_video).start() data_len = data_loader.length() im_names_desc = tqdm(range(data_len)) batchSize = args.posebatch for i in im_names_desc: start_time = getTime() with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1]) continue ckpt_time, det_time = getTime(start_time) runtime_profile['dt'].append(det_time) # Pose Estimation datalen = inps.size(0) leftover = 0 if (datalen) % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)] hm_j = pose_model(inps_j) hm.append(hm_j) hm = torch.cat(hm) ckpt_time, pose_time = getTime(ckpt_time) runtime_profile['pt'].append(pose_time) hm = hm.cpu() writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1]) ckpt_time, post_time = getTime(ckpt_time) runtime_profile['pn'].append(post_time) if args.profile: # TQDM im_names_desc.set_description( 'det time: {dt:.3f} | pose time: {pt:.2f} | post processing: {pn:.4f}'.format( dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn'])) ) print('===========================> Finish Model Running.') if (args.save_img or args.save_video) and not args.vis_fast: print('===========================> Rendering remaining images in the queue...') print('===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).') while (writer.running()): pass writer.stop() final_result = writer.results() write_json(final_result, args.outputpath) if __name__ == "__main__": args = opt args.dataset = 'coco' args.sp = True if not args.sp: torch.multiprocessing.set_start_method('forkserver', force=True) torch.multiprocessing.set_sharing_strategy('file_system') video_name = 'kunkun' args.inputpath = f'data/split_{video_name}' args.outputpath = f'data/alphapose_{video_name}' args.save_img = True main(args)