from __future__ import division import time import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import cv2 from .util import * from .darknet import Darknet from .preprocess import prep_image, inp_to_image, letterbox_image import pandas as pd import random import pickle as pkl import argparse def get_test_input(input_dim, CUDA): img = cv2.imread("dog-cycle-car.png") img = cv2.resize(img, (input_dim, input_dim)) img_ = img[:,:,::-1].transpose((2,0,1)) img_ = img_[np.newaxis,:,:,:]/255.0 img_ = torch.from_numpy(img_).float() img_ = Variable(img_) if CUDA: img_ = img_ return img_ def prep_image(img, inp_dim): """ Prepare image for inputting to the neural network. Returns a Variable """ orig_im = img dim = orig_im.shape[1], orig_im.shape[0] img = (letterbox_image(orig_im, (inp_dim, inp_dim))) img_ = img[:,:,::-1].transpose((2,0,1)).copy() img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) return img_, orig_im, dim def write(x, img): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) cls = int(x[-1]) label = "{0}".format(classes[cls]) color = random.choice(colors) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); return img def arg_parse(): """ Parse arguements to the detect module """ parser = argparse.ArgumentParser(description='YOLO v3 Video Detection Module') parser.add_argument("--video", dest = 'video', help = "Video to run detection upon", default = "video.avi", type = str) parser.add_argument("--dataset", dest = "dataset", help = "Dataset on which the network has been trained", default = "pascal") parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.5) parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4) parser.add_argument("--cfg", dest = 'cfgfile', help = "Config file", default = "cfg/yolov3-spp.cfg", type = str) parser.add_argument("--weights", dest = 'weightsfile', help = "weightsfile", default = "yolov3-spp.weights", type = str) parser.add_argument("--reso", dest = 'reso', help = "Input resolution of the network. Increase to increase accuracy. Decrease to increase speed", default = "416", type = str) return parser.parse_args() if __name__ == '__main__': args = arg_parse() confidence = float(args.confidence) nms_thesh = float(args.nms_thresh) start = 0 CUDA = torch.cuda.is_available() num_classes = 80 CUDA = torch.cuda.is_available() bbox_attrs = 5 + num_classes print("Loading network.....") model = Darknet(args.cfgfile) model.load_weights(args.weightsfile) print("Network successfully loaded") model.net_info["height"] = args.reso inp_dim = int(model.net_info["height"]) assert inp_dim % 32 == 0 assert inp_dim > 32 if CUDA: model model(get_test_input(inp_dim, CUDA), CUDA) model.eval() videofile = args.video cap = cv2.VideoCapture(videofile) assert cap.isOpened(), 'Cannot capture source' frames = 0 start = time.time() while cap.isOpened(): ret, frame = cap.read() if ret: img, orig_im, dim = prep_image(frame, inp_dim) im_dim = torch.FloatTensor(dim).repeat(1,2) if CUDA: im_dim = im_dim img = img with torch.no_grad(): output = model(Variable(img), CUDA) output = write_results(output, confidence, num_classes, nms = True, nms_conf = nms_thesh) if type(output) == int: frames += 1 print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) cv2.imshow("frame", orig_im) key = cv2.waitKey(1) if key & 0xFF == ord('q'): break continue im_dim = im_dim.repeat(output.size(0), 1) scaling_factor = torch.min(inp_dim/im_dim,1)[0].view(-1,1) output[:,[1,3]] -= (inp_dim - scaling_factor*im_dim[:,0].view(-1,1))/2 output[:,[2,4]] -= (inp_dim - scaling_factor*im_dim[:,1].view(-1,1))/2 output[:,1:5] /= scaling_factor for i in range(output.shape[0]): output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim[i,0]) output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim[i,1]) classes = load_classes('data/coco.names') colors = pkl.load(open("pallete", "rb")) list(map(lambda x: write(x, orig_im), output)) cv2.imshow("frame", orig_im) key = cv2.waitKey(1) if key & 0xFF == ord('q'): break frames += 1 print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) else: break