import torch import torch.nn as nn from torch.autograd import Variable fc_out = 256 fc_unit = 1024 class refine(nn.Module): def __init__(self, opt): super().__init__() out_seqlen = 1 fc_in = opt.out_channels*2*out_seqlen*opt.n_joints fc_out = opt.in_channels * opt.n_joints self.post_refine = nn.Sequential( nn.Linear(fc_in, fc_unit), nn.ReLU(), nn.Dropout(0.5,inplace=True), nn.Linear(fc_unit, fc_out), nn.Sigmoid() ) def forward(self, x, x_1): N, T, V,_ = x.size() x_in = torch.cat((x, x_1), -1) x_in = x_in.view(N, -1) score = self.post_refine(x_in).view(N,T,V,2) score_cm = Variable(torch.ones(score.size()), requires_grad=False).cuda() - score x_out = x.clone() x_out[:, :, :, :2] = score * x[:, :, :, :2] + score_cm * x_1[:, :, :, :2] return x_out