# ----------------------------------------------------- # Copyright (c) Shanghai Jiao Tong University. All rights reserved. # Written by Jiefeng Li (jeff.lee.sjtu@gmail.com) # ----------------------------------------------------- from utils.img import (load_image, drawGaussian, cropBox, transformBox, flip, shuffleLR, cv_rotate) import torch import numpy as np import random from opt import opt def rnd(x): return max(-2 * x, min(2 * x, np.random.randn(1)[0] * x)) def generateSampleBox(img_path, bndbox, part, nJoints, imgset, scale_factor, dataset, train=True, nJoints_coco=17): img = load_image(img_path) if train: img[0].mul_(random.uniform(0.7, 1.3)).clamp_(0, 1) img[1].mul_(random.uniform(0.7, 1.3)).clamp_(0, 1) img[2].mul_(random.uniform(0.7, 1.3)).clamp_(0, 1) img[0].add_(-0.406) img[1].add_(-0.457) img[2].add_(-0.480) upLeft = torch.Tensor((int(bndbox[0][0]), int(bndbox[0][1]))) bottomRight = torch.Tensor((int(bndbox[0][2]), int(bndbox[0][3]))) ht = bottomRight[1] - upLeft[1] width = bottomRight[0] - upLeft[0] imght = img.shape[1] imgwidth = img.shape[2] scaleRate = random.uniform(*scale_factor) upLeft[0] = max(0, upLeft[0] - width * scaleRate / 2) upLeft[1] = max(0, upLeft[1] - ht * scaleRate / 2) bottomRight[0] = min(imgwidth - 1, bottomRight[0] + width * scaleRate / 2) bottomRight[1] = min(imght - 1, bottomRight[1] + ht * scaleRate / 2) # Doing Random Sample if opt.addDPG: PatchScale = random.uniform(0, 1) if PatchScale > 0.85: ratio = ht / width if (width < ht): patchWidth = PatchScale * width patchHt = patchWidth * ratio else: patchHt = PatchScale * ht patchWidth = patchHt / ratio xmin = upLeft[0] + random.uniform(0, 1) * (width - patchWidth) ymin = upLeft[1] + random.uniform(0, 1) * (ht - patchHt) xmax = xmin + patchWidth + 1 ymax = ymin + patchHt + 1 else: xmin = max( 1, min(upLeft[0] + np.random.normal(-0.0142, 0.1158) * width, imgwidth - 3)) ymin = max( 1, min(upLeft[1] + np.random.normal(0.0043, 0.068) * ht, imght - 3)) xmax = min(max( xmin + 2, bottomRight[0] + np.random.normal(0.0154, 0.1337) * width), imgwidth - 3) ymax = min( max(ymin + 2, bottomRight[1] + np.random.normal(-0.0013, 0.0711) * ht), imght - 3) upLeft[0] = xmin upLeft[1] = ymin bottomRight[0] = xmax bottomRight[1] = ymax # Counting Joints number jointNum = 0 if imgset == 'coco': for i in range(17): if part[i][0] > 0 and part[i][0] > upLeft[0] and part[i][1] > upLeft[1] \ and part[i][0] < bottomRight[0] and part[i][1] < bottomRight[1]: jointNum += 1 # Doing Random Crop if opt.addDPG: if jointNum > 13 and train: switch = random.uniform(0, 1) if switch > 0.96: bottomRight[0] = (upLeft[0] + bottomRight[0]) / 2 bottomRight[1] = (upLeft[1] + bottomRight[1]) / 2 elif switch > 0.92: upLeft[0] = (upLeft[0] + bottomRight[0]) / 2 bottomRight[1] = (upLeft[1] + bottomRight[1]) / 2 elif switch > 0.88: upLeft[1] = (upLeft[1] + bottomRight[1]) / 2 bottomRight[0] = (upLeft[0] + bottomRight[0]) / 2 elif switch > 0.84: upLeft[0] = (upLeft[0] + bottomRight[0]) / 2 upLeft[1] = (upLeft[1] + bottomRight[1]) / 2 elif switch > 0.80: bottomRight[0] = (upLeft[0] + bottomRight[0]) / 2 elif switch > 0.76: upLeft[0] = (upLeft[0] + bottomRight[0]) / 2 elif switch > 0.72: bottomRight[1] = (upLeft[1] + bottomRight[1]) / 2 elif switch > 0.68: upLeft[1] = (upLeft[1] + bottomRight[1]) / 2 inputResH, inputResW = opt.inputResH, opt.inputResW outputResH, outputResW = opt.outputResH, opt.outputResW inp = cropBox(img, upLeft, bottomRight, inputResH, inputResW) if jointNum == 0: inp = torch.zeros(3, inputResH, inputResW) out = torch.zeros(nJoints, outputResH, outputResW) setMask = torch.zeros(nJoints, outputResH, outputResW) # Draw Label if imgset == 'coco': for i in range(nJoints_coco): if part[i][0] > 0 and part[i][0] > upLeft[0] and part[i][1] > upLeft[1] \ and part[i][0] < bottomRight[0] and part[i][1] < bottomRight[1]: hm_part = transformBox( part[i], upLeft, bottomRight, inputResH, inputResW, outputResH, outputResW) out[i] = drawGaussian(out[i], hm_part, opt.hmGauss) setMask[i].add_(1) if train: # Flip if random.uniform(0, 1) < 0.5: inp = flip(inp) out = shuffleLR(flip(out), dataset) # Rotate r = rnd(opt.rotate) if random.uniform(0, 1) < 0.6: r = 0 if r != 0: inp = cv_rotate(inp, r, opt.inputResW, opt.inputResH) out = cv_rotate(out, r, opt.outputResW, opt.outputResH) return inp, out, setMask