import os import h5py from functools import reduce import torch.utils.data as data from ..pose import generateSampleBox from opt import opt class Mpii(data.Dataset): def __init__(self, train=True, sigma=1, scale_factor=0.25, rot_factor=30, label_type='Gaussian'): self.img_folder = '../data/mpii/images' # root image folders self.is_train = train # training set or test set self.inputResH = 320 self.inputResW = 256 self.outputResH = 80 self.outputResW = 64 self.sigma = sigma self.scale_factor = (0.2, 0.3) self.rot_factor = rot_factor self.label_type = label_type self.nJoints_mpii = 16 self.nJoints = 16 self.accIdxs = (1, 2, 3, 4, 5, 6, 11, 12, 15, 16) self.flipRef = ((1, 6), (2, 5), (3, 4), (11, 16), (12, 15), (13, 14)) # create train/val split with h5py.File('../data/mpii/annot_mpii.h5', 'r') as annot: # train self.imgname_mpii_train = annot['imgname'][:-1358] self.bndbox_mpii_train = annot['bndbox'][:-1358] self.part_mpii_train = annot['part'][:-1358] # val self.imgname_mpii_val = annot['imgname'][-1358:] self.bndbox_mpii_val = annot['bndbox'][-1358:] self.part_mpii_val = annot['part'][-1358:] self.size_train = self.imgname_mpii_train.shape[0] self.size_val = self.imgname_mpii_val.shape[0] self.train, self.valid = [], [] def __getitem__(self, index): sf = self.scale_factor if self.is_train: part = self.part_mpii_train[index] bndbox = self.bndbox_mpii_train[index] imgname = self.imgname_mpii_train[index] else: part = self.part_mpii_val[index] bndbox = self.bndbox_mpii_val[index] imgname = self.imgname_mpii_val[index] imgname = reduce(lambda x, y: x + y, map(lambda x: chr(int(x)), imgname))[:13] img_path = os.path.join(self.img_folder, imgname) metaData = generateSampleBox(img_path, bndbox, part, self.nJoints, 'mpii', sf, self, train=self.is_train) inp, out_bigcircle, out_smallcircle, out, setMask = metaData label = [] for i in range(opt.nStack): if i < 2: #label.append(out_bigcircle.clone()) label.append(out.clone()) elif i < 4: #label.append(out_smallcircle.clone()) label.append(out.clone()) else: label.append(out.clone()) return inp, label, setMask def __len__(self): if self.is_train: return self.size_train else: return self.size_val