Sapphire-356's picture
Change to the CPU version
aa34300
import os
from SPPE.src.main_fast_inference import *
from dataloader import ImageLoader, DetectionLoader, DetectionProcessor, DataWriter, Mscoco
from fn import getTime
from opt import opt
from pPose_nms import write_json
from tqdm import tqdm
def main(args):
inputpath = args.inputpath
inputlist = args.inputlist
mode = args.mode
if not os.path.exists(args.outputpath):
os.mkdir(args.outputpath)
if len(inputlist):
im_names = open(inputlist, 'r').readlines()
elif len(inputpath) and inputpath != '/':
for root, dirs, files in os.walk(inputpath):
im_names = files
else:
raise IOError('Error: must contain either --indir/--list')
# Load input images
data_loader = ImageLoader(im_names, batchSize=args.detbatch, format='yolo').start()
# Load detection loader
print('Loading YOLO model..')
sys.stdout.flush()
det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start()
det_processor = DetectionProcessor(det_loader).start()
# Load pose model
pose_dataset = Mscoco()
if args.fast_inference:
pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset)
else:
pose_model = InferenNet(4 * 1 + 1, pose_dataset)
pose_model
pose_model.eval()
runtime_profile = {
'dt': [],
'pt': [],
'pn': []
}
# Init data writer
writer = DataWriter(args.save_video).start()
data_len = data_loader.length()
im_names_desc = tqdm(range(data_len))
batchSize = args.posebatch
for i in im_names_desc:
start_time = getTime()
with torch.no_grad():
(inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read()
if boxes is None or boxes.nelement() == 0:
writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1])
continue
ckpt_time, det_time = getTime(start_time)
runtime_profile['dt'].append(det_time)
# Pose Estimation
datalen = inps.size(0)
leftover = 0
if (datalen) % batchSize:
leftover = 1
num_batches = datalen // batchSize + leftover
hm = []
for j in range(num_batches):
inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)]
hm_j = pose_model(inps_j)
hm.append(hm_j)
hm = torch.cat(hm)
ckpt_time, pose_time = getTime(ckpt_time)
runtime_profile['pt'].append(pose_time)
hm = hm.cpu()
writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1])
ckpt_time, post_time = getTime(ckpt_time)
runtime_profile['pn'].append(post_time)
if args.profile:
# TQDM
im_names_desc.set_description(
'det time: {dt:.3f} | pose time: {pt:.2f} | post processing: {pn:.4f}'.format(
dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))
)
print('===========================> Finish Model Running.')
if (args.save_img or args.save_video) and not args.vis_fast:
print('===========================> Rendering remaining images in the queue...')
print('===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).')
while (writer.running()):
pass
writer.stop()
final_result = writer.results()
write_json(final_result, args.outputpath)
if __name__ == "__main__":
args = opt
args.dataset = 'coco'
args.sp = True
if not args.sp:
torch.multiprocessing.set_start_method('forkserver', force=True)
torch.multiprocessing.set_sharing_strategy('file_system')
video_name = 'kunkun'
args.inputpath = f'data/split_{video_name}'
args.outputpath = f'data/alphapose_{video_name}'
args.save_img = True
main(args)