Spaces:
Running
Running
import os | |
from SPPE.src.main_fast_inference import * | |
from dataloader import ImageLoader, DetectionLoader, DetectionProcessor, DataWriter, Mscoco | |
from fn import getTime | |
from opt import opt | |
from pPose_nms import write_json | |
from tqdm import tqdm | |
def main(args): | |
inputpath = args.inputpath | |
inputlist = args.inputlist | |
mode = args.mode | |
if not os.path.exists(args.outputpath): | |
os.mkdir(args.outputpath) | |
if len(inputlist): | |
im_names = open(inputlist, 'r').readlines() | |
elif len(inputpath) and inputpath != '/': | |
for root, dirs, files in os.walk(inputpath): | |
im_names = files | |
else: | |
raise IOError('Error: must contain either --indir/--list') | |
# Load input images | |
data_loader = ImageLoader(im_names, batchSize=args.detbatch, format='yolo').start() | |
# Load detection loader | |
print('Loading YOLO model..') | |
sys.stdout.flush() | |
det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() | |
det_processor = DetectionProcessor(det_loader).start() | |
# Load pose model | |
pose_dataset = Mscoco() | |
if args.fast_inference: | |
pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) | |
else: | |
pose_model = InferenNet(4 * 1 + 1, pose_dataset) | |
pose_model | |
pose_model.eval() | |
runtime_profile = { | |
'dt': [], | |
'pt': [], | |
'pn': [] | |
} | |
# Init data writer | |
writer = DataWriter(args.save_video).start() | |
data_len = data_loader.length() | |
im_names_desc = tqdm(range(data_len)) | |
batchSize = args.posebatch | |
for i in im_names_desc: | |
start_time = getTime() | |
with torch.no_grad(): | |
(inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() | |
if boxes is None or boxes.nelement() == 0: | |
writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1]) | |
continue | |
ckpt_time, det_time = getTime(start_time) | |
runtime_profile['dt'].append(det_time) | |
# Pose Estimation | |
datalen = inps.size(0) | |
leftover = 0 | |
if (datalen) % batchSize: | |
leftover = 1 | |
num_batches = datalen // batchSize + leftover | |
hm = [] | |
for j in range(num_batches): | |
inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)] | |
hm_j = pose_model(inps_j) | |
hm.append(hm_j) | |
hm = torch.cat(hm) | |
ckpt_time, pose_time = getTime(ckpt_time) | |
runtime_profile['pt'].append(pose_time) | |
hm = hm.cpu() | |
writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1]) | |
ckpt_time, post_time = getTime(ckpt_time) | |
runtime_profile['pn'].append(post_time) | |
if args.profile: | |
# TQDM | |
im_names_desc.set_description( | |
'det time: {dt:.3f} | pose time: {pt:.2f} | post processing: {pn:.4f}'.format( | |
dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn'])) | |
) | |
print('===========================> Finish Model Running.') | |
if (args.save_img or args.save_video) and not args.vis_fast: | |
print('===========================> Rendering remaining images in the queue...') | |
print('===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).') | |
while (writer.running()): | |
pass | |
writer.stop() | |
final_result = writer.results() | |
write_json(final_result, args.outputpath) | |
if __name__ == "__main__": | |
args = opt | |
args.dataset = 'coco' | |
args.sp = True | |
if not args.sp: | |
torch.multiprocessing.set_start_method('forkserver', force=True) | |
torch.multiprocessing.set_sharing_strategy('file_system') | |
video_name = 'kunkun' | |
args.inputpath = f'data/split_{video_name}' | |
args.outputpath = f'data/alphapose_{video_name}' | |
args.save_img = True | |
main(args) | |