Spaces:
Running
Running
# ----------------------------------------------------- | |
# Copyright (c) Shanghai Jiao Tong University. All rights reserved. | |
# Written by Jiefeng Li ([email protected]) | |
# ----------------------------------------------------- | |
import numpy as np | |
import torch | |
import scipy.misc | |
import torch.nn.functional as F | |
import cv2 | |
from opt import opt | |
RED = (0, 0, 255) | |
GREEN = (0, 255, 0) | |
BLUE = (255, 0, 0) | |
CYAN = (255, 255, 0) | |
YELLOW = (0, 255, 255) | |
ORANGE = (0, 165, 255) | |
PURPLE = (255, 0, 255) | |
def im_to_torch(img): | |
img = np.transpose(img, (2, 0, 1)) # C*H*W | |
img = to_torch(img).float() | |
if img.max() > 1: | |
img /= 255 | |
return img | |
def torch_to_im(img): | |
img = to_numpy(img) | |
img = np.transpose(img, (1, 2, 0)) # C*H*W | |
return img | |
def load_image(img_path): | |
# H x W x C => C x H x W | |
return im_to_torch(scipy.misc.imread(img_path, mode='RGB')) | |
def to_numpy(tensor): | |
if torch.is_tensor(tensor): | |
return tensor.cpu().numpy() | |
elif type(tensor).__module__ != 'numpy': | |
raise ValueError("Cannot convert {} to numpy array" | |
.format(type(tensor))) | |
return tensor | |
def to_torch(ndarray): | |
if type(ndarray).__module__ == 'numpy': | |
return torch.from_numpy(ndarray) | |
elif not torch.is_tensor(ndarray): | |
raise ValueError("Cannot convert {} to torch tensor" | |
.format(type(ndarray))) | |
return ndarray | |
def drawGaussian(img, pt, sigma): | |
img = to_numpy(img) | |
tmpSize = 3 * sigma | |
# Check that any part of the gaussian is in-bounds | |
ul = [int(pt[0] - tmpSize), int(pt[1] - tmpSize)] | |
br = [int(pt[0] + tmpSize + 1), int(pt[1] + tmpSize + 1)] | |
if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or | |
br[0] < 0 or br[1] < 0): | |
# If not, just return the image as is | |
return to_torch(img) | |
# Generate gaussian | |
size = 2 * tmpSize + 1 | |
x = np.arange(0, size, 1, float) | |
y = x[:, np.newaxis] | |
x0 = y0 = size // 2 | |
sigma = size / 4.0 | |
# The gaussian is not normalized, we want the center value to equal 1 | |
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) | |
# Usable gaussian range | |
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0] | |
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1] | |
# Image range | |
img_x = max(0, ul[0]), min(br[0], img.shape[1]) | |
img_y = max(0, ul[1]), min(br[1], img.shape[0]) | |
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] | |
return to_torch(img) | |
def transformBox(pt, ul, br, inpH, inpW, resH, resW): | |
center = torch.zeros(2) | |
center[0] = (br[0] - 1 - ul[0]) / 2 | |
center[1] = (br[1] - 1 - ul[1]) / 2 | |
lenH = max(br[1] - ul[1], (br[0] - ul[0]) * inpH / inpW) | |
lenW = lenH * inpW / inpH | |
_pt = torch.zeros(2) | |
_pt[0] = pt[0] - ul[0] | |
_pt[1] = pt[1] - ul[1] | |
# Move to center | |
_pt[0] = _pt[0] + max(0, (lenW - 1) / 2 - center[0]) | |
_pt[1] = _pt[1] + max(0, (lenH - 1) / 2 - center[1]) | |
pt = (_pt * resH) / lenH | |
pt[0] = round(float(pt[0])) | |
pt[1] = round(float(pt[1])) | |
return pt.int() | |
def transformBoxInvert(pt, ul, br, inpH, inpW, resH, resW): | |
center = torch.zeros(2) | |
center[0] = (br[0] - 1 - ul[0]) / 2 | |
center[1] = (br[1] - 1 - ul[1]) / 2 | |
lenH = max(br[1] - ul[1], (br[0] - ul[0]) * inpH / inpW) | |
lenW = lenH * inpW / inpH | |
_pt = (pt * lenH) / resH | |
_pt[0] = _pt[0] - max(0, (lenW - 1) / 2 - center[0]) | |
_pt[1] = _pt[1] - max(0, (lenH - 1) / 2 - center[1]) | |
new_point = torch.zeros(2) | |
new_point[0] = _pt[0] + ul[0] | |
new_point[1] = _pt[1] + ul[1] | |
return new_point | |
def cropBox(img, ul, br, resH, resW): | |
ul = ul.int() | |
br = (br - 1).int() | |
# br = br.int() | |
lenH = max((br[1] - ul[1]).item(), (br[0] - ul[0]).item() * resH / resW) | |
lenW = lenH * resW / resH | |
if img.dim() == 2: | |
img = img[np.newaxis, :] | |
box_shape = [br[1] - ul[1], br[0] - ul[0]] | |
pad_size = [(lenH - box_shape[0]) // 2, (lenW - box_shape[1]) // 2] | |
# Padding Zeros | |
img[:, :ul[1], :], img[:, :, :ul[0]] = 0, 0 | |
img[:, br[1] + 1:, :], img[:, :, br[0] + 1:] = 0, 0 | |
src = np.zeros((3, 2), dtype=np.float32) | |
dst = np.zeros((3, 2), dtype=np.float32) | |
src[0, :] = np.array([ul[0] - pad_size[1], ul[1] - pad_size[0]], np.float32) | |
src[1, :] = np.array([br[0] + pad_size[1], br[1] + pad_size[0]], np.float32) | |
dst[0, :] = 0 | |
dst[1, :] = np.array([resW - 1, resH - 1], np.float32) | |
src[2:, :] = get_3rd_point(src[0, :], src[1, :]) | |
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) | |
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
dst_img = cv2.warpAffine(torch_to_im(img), trans, | |
(resW, resH), flags=cv2.INTER_LINEAR) | |
return im_to_torch(torch.Tensor(dst_img)) | |
def cv_rotate(img, rot, resW, resH): | |
center = np.array((resW - 1, resH - 1)) / 2 | |
rot_rad = np.pi * rot / 180 | |
src_dir = get_dir([0, (resH - 1) * -0.5], rot_rad) | |
dst_dir = np.array([0, (resH - 1) * -0.5], np.float32) | |
src = np.zeros((3, 2), dtype=np.float32) | |
dst = np.zeros((3, 2), dtype=np.float32) | |
src[0, :] = center | |
src[1, :] = center + src_dir | |
dst[0, :] = [(resW - 1) * 0.5, (resH - 1) * 0.5] | |
dst[1, :] = np.array([(resW - 1) * 0.5, (resH - 1) * 0.5]) + dst_dir | |
src[2:, :] = get_3rd_point(src[0, :], src[1, :]) | |
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) | |
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
dst_img = cv2.warpAffine(torch_to_im(img), trans, | |
(resW, resH), flags=cv2.INTER_LINEAR) | |
return im_to_torch(torch.Tensor(dst_img)) | |
def flip(x): | |
assert (x.dim() == 3 or x.dim() == 4) | |
if '0.4.1' in torch.__version__: | |
dim = x.dim() - 1 | |
return x.flip(dims=(dim,)) | |
else: | |
is_cuda = False | |
if x.is_cuda: | |
x = x.cpu() | |
is_cuda = True | |
x = x.numpy().copy() | |
if x.ndim == 3: | |
x = np.transpose(np.fliplr(np.transpose(x, (0, 2, 1))), (0, 2, 1)) | |
elif x.ndim == 4: | |
for i in range(x.shape[0]): | |
x[i] = np.transpose( | |
np.fliplr(np.transpose(x[i], (0, 2, 1))), (0, 2, 1)) | |
x = torch.from_numpy(x.copy()) | |
if is_cuda: | |
x = x | |
return x | |
def shuffleLR(x, dataset): | |
flipRef = dataset.flipRef | |
assert (x.dim() == 3 or x.dim() == 4) | |
for pair in flipRef: | |
dim0, dim1 = pair | |
dim0 -= 1 | |
dim1 -= 1 | |
if x.dim() == 4: | |
tmp = x[:, dim1].clone() | |
x[:, dim1] = x[:, dim0].clone() | |
x[:, dim0] = tmp.clone() | |
#x[:, dim0], x[:, dim1] = deepcopy((x[:, dim1], x[:, dim0])) | |
else: | |
tmp = x[dim1].clone() | |
x[dim1] = x[dim0].clone() | |
x[dim0] = tmp.clone() | |
#x[dim0], x[dim1] = deepcopy((x[dim1], x[dim0])) | |
return x | |
def vis_frame(frame, im_res, format='coco'): | |
''' | |
frame: frame image | |
im_res: im_res of predictions | |
format: coco or mpii | |
return rendered image | |
''' | |
if format == 'coco': | |
l_pair = [ | |
(0, 1), (0, 2), (1, 3), (2, 4), # Head | |
(5, 6), (5, 7), (7, 9), (6, 8), (8, 10), | |
(5, 11), (6, 12), # Body | |
(11, 13), (12, 14), (13, 15), (14, 16) | |
] | |
p_color = [RED, RED, RED, RED, RED, YELLOW, YELLOW, YELLOW, | |
YELLOW, YELLOW, YELLOW, GREEN, GREEN, GREEN, GREEN, GREEN, GREEN] | |
line_color = [YELLOW, YELLOW, YELLOW, YELLOW, BLUE, BLUE, | |
BLUE, BLUE, BLUE, PURPLE, PURPLE, RED, RED, RED, RED] | |
elif format == 'mpii': | |
l_pair = [ | |
(8, 9), (11, 12), (11, 10), (2, 1), (1, 0), | |
(13, 14), (14, 15), (3, 4), (4, 5), | |
(8, 7), (7, 6), (6, 2), (6, 3), (8, 12), (8, 13) | |
] | |
p_color = [PURPLE, BLUE, BLUE, RED, RED, BLUE, BLUE, RED, | |
RED, PURPLE, PURPLE, PURPLE, RED, RED, BLUE, BLUE] | |
line_color = [PURPLE, BLUE, BLUE, RED, RED, BLUE, BLUE, | |
RED, RED, PURPLE, PURPLE, RED, RED, BLUE, BLUE] | |
else: | |
raise NotImplementedError | |
im_name = im_res['imgname'].split('/')[-1] | |
img = frame.copy() | |
for human in im_res['result']: | |
part_line = {} | |
kp_preds = human['keypoints'] | |
kp_scores = human['kp_score'] | |
# Draw keypoints | |
for n in range(kp_scores.shape[0]): | |
if kp_scores[n] <= 0.15: | |
continue | |
cor_x, cor_y = int(kp_preds[n, 0]), int(kp_preds[n, 1]) | |
part_line[n] = (cor_x, cor_y) | |
cv2.circle(img, (cor_x, cor_y), 4, p_color[n], -1) | |
# Now create a mask of logo and create its inverse mask also | |
#transparency = max(0, min(1, kp_scores[n])) | |
#img = cv2.addWeighted(bg, transparency, img, 1, 0) | |
# Draw limbs | |
for i, (start_p, end_p) in enumerate(l_pair): | |
if start_p in part_line and end_p in part_line: | |
start_xy = part_line[start_p] | |
end_xy = part_line[end_p] | |
cv2.line(img, start_xy, end_xy, | |
line_color[i], (0.5 * (kp_scores[start_p] + kp_scores[end_p])) + 1) | |
#transparency = max( | |
# 0, min(1, (kp_scores[start_p] + kp_scores[end_p]))) | |
#img = cv2.addWeighted(bg, transparency, img, 1, 0) | |
return img | |
def get_3rd_point(a, b): | |
direct = a - b | |
return b + np.array([-direct[1], direct[0]], dtype=np.float32) | |
def get_dir(src_point, rot_rad): | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
src_result = [0, 0] | |
src_result[0] = src_point[0] * cs - src_point[1] * sn | |
src_result[1] = src_point[0] * sn + src_point[1] * cs | |
return src_result | |