Sapphire-356's picture
Change to the CPU version
aa34300
import numpy as np
import cv2
import torch
import scipy.misc
from torchvision import transforms
import torch.nn.functional as F
from scipy.ndimage import maximum_filter
from PIL import Image
from copy import deepcopy
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
def im_to_torch(img):
img = np.transpose(img, (2, 0, 1)) # C*H*W
img = to_torch(img).float()
if img.max() > 1:
img /= 255
return img
def torch_to_im(img):
img = to_numpy(img)
img = np.transpose(img, (1, 2, 0)) # C*H*W
return img
def load_image(img_path):
# H x W x C => C x H x W
return im_to_torch(scipy.misc.imread(img_path, mode='RGB'))
def to_numpy(tensor):
if torch.is_tensor(tensor):
return tensor.cpu().numpy()
elif type(tensor).__module__ != 'numpy':
raise ValueError("Cannot convert {} to numpy array"
.format(type(tensor)))
return tensor
def to_torch(ndarray):
if type(ndarray).__module__ == 'numpy':
return torch.from_numpy(ndarray)
elif not torch.is_tensor(ndarray):
raise ValueError("Cannot convert {} to torch tensor"
.format(type(ndarray)))
return ndarray
def drawCircle(img, pt, sigma):
img = to_numpy(img)
tmpSize = 3 * sigma
# Check that any part of the gaussian is in-bounds
ul = [int(pt[0] - tmpSize), int(pt[1] - tmpSize)]
br = [int(pt[0] + tmpSize + 1), int(pt[1] + tmpSize + 1)]
if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or
br[0] < 0 or br[1] < 0):
# If not, just return the image as is
return to_torch(img)
# Generate gaussian
size = 2 * tmpSize + 1
x = np.arange(0, size, 1, float)
y = x[:, np.newaxis]
x0 = y0 = size // 2
sigma = size / 4.0
# The gaussian is not normalized, we want the center value to equal 1
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
g[g > 0] = 1
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], img.shape[1])
img_y = max(0, ul[1]), min(br[1], img.shape[0])
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return to_torch(img)
def drawGaussian(img, pt, sigma):
img = to_numpy(img)
tmpSize = 3 * sigma
# Check that any part of the gaussian is in-bounds
ul = [int(pt[0] - tmpSize), int(pt[1] - tmpSize)]
br = [int(pt[0] + tmpSize + 1), int(pt[1] + tmpSize + 1)]
if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or
br[0] < 0 or br[1] < 0):
# If not, just return the image as is
return to_torch(img)
# Generate gaussian
size = 2 * tmpSize + 1
x = np.arange(0, size, 1, float)
y = x[:, np.newaxis]
x0 = y0 = size // 2
sigma = size / 4.0
# The gaussian is not normalized, we want the center value to equal 1
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], img.shape[1])
img_y = max(0, ul[1]), min(br[1], img.shape[0])
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return to_torch(img)
def drawBigCircle(img, pt, sigma):
img = to_numpy(img)
tmpSize = 3 * sigma
# Check that any part of the gaussian is in-bounds
ul = [int(pt[0] - tmpSize), int(pt[1] - tmpSize)]
br = [int(pt[0] + tmpSize + 1), int(pt[1] + tmpSize + 1)]
if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or
br[0] < 0 or br[1] < 0):
# If not, just return the image as is
return to_torch(img)
# Generate gaussian
size = 2 * tmpSize + 1
x = np.arange(0, size, 1, float)
y = x[:, np.newaxis]
x0 = y0 = size // 2
sigma = size / 4.0
# The gaussian is not normalized, we want the center value to equal 1
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
g[g > 0.4] = 1
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], img.shape[1])
img_y = max(0, ul[1]), min(br[1], img.shape[0])
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return to_torch(img)
def drawSmallCircle(img, pt, sigma):
img = to_numpy(img)
tmpSize = 3 * sigma
# Check that any part of the gaussian is in-bounds
ul = [int(pt[0] - tmpSize), int(pt[1] - tmpSize)]
br = [int(pt[0] + tmpSize + 1), int(pt[1] + tmpSize + 1)]
if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or
br[0] < 0 or br[1] < 0):
# If not, just return the image as is
return to_torch(img)
# Generate gaussian
size = 2 * tmpSize + 1
x = np.arange(0, size, 1, float)
y = x[:, np.newaxis]
x0 = y0 = size // 2
sigma = size / 4.0
# The gaussian is not normalized, we want the center value to equal 1
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
g[g > 0.5] = 1
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], img.shape[1])
img_y = max(0, ul[1]), min(br[1], img.shape[0])
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return to_torch(img)
def transformBox(pt, ul, br, inpH, inpW, resH, resW):
center = torch.zeros(2)
center[0] = (br[0] - 1 - ul[0]) / 2
center[1] = (br[1] - 1 - ul[1]) / 2
lenH = max(br[1] - ul[1], (br[0] - ul[0]) * inpH / inpW)
lenW = lenH * inpW / inpH
_pt = torch.zeros(2)
_pt[0] = pt[0] - ul[0]
_pt[1] = pt[1] - ul[1]
# Move to center
_pt[0] = _pt[0] + max(0, (lenW - 1) / 2 - center[0])
_pt[1] = _pt[1] + max(0, (lenH - 1) / 2 - center[1])
pt = (_pt * resH) / lenH
pt[0] = round(float(pt[0]))
pt[1] = round(float(pt[1]))
return pt.int()
def transformBoxInvert(pt, ul, br, inpH, inpW, resH, resW):
center = np.zeros(2)
center[0] = (br[0] - 1 - ul[0]) / 2
center[1] = (br[1] - 1 - ul[1]) / 2
lenH = max(br[1] - ul[1], (br[0] - ul[0]) * inpH / inpW)
lenW = lenH * inpW / inpH
_pt = (pt * lenH) / resH
_pt[0] = _pt[0] - max(0, (lenW - 1) / 2 - center[0])
_pt[1] = _pt[1] - max(0, (lenH - 1) / 2 - center[1])
new_point = np.zeros(2)
new_point[0] = _pt[0] + ul[0]
new_point[1] = _pt[1] + ul[1]
return new_point
def transformBoxInvert_batch(pt, ul, br, inpH, inpW, resH, resW):
'''
pt: [n, 17, 2]
ul: [n, 2]
br: [n, 2]
'''
center = (br - 1 - ul) / 2
size = br - ul
size[:, 0] *= (inpH / inpW)
lenH, _ = torch.max(size, dim=1) # [n,]
lenW = lenH * (inpW / inpH)
_pt = (pt * lenH[:, np.newaxis, np.newaxis]) / resH
_pt[:, :, 0] = _pt[:, :, 0] - ((lenW[:, np.newaxis].repeat(1, 17) - 1) /
2 - center[:, 0].unsqueeze(-1).repeat(1, 17)).clamp(min=0)
_pt[:, :, 1] = _pt[:, :, 1] - ((lenH[:, np.newaxis].repeat(1, 17) - 1) /
2 - center[:, 1].unsqueeze(-1).repeat(1, 17)).clamp(min=0)
new_point = torch.zeros(pt.size())
new_point[:, :, 0] = _pt[:, :, 0] + ul[:, 0].unsqueeze(-1).repeat(1, 17)
new_point[:, :, 1] = _pt[:, :, 1] + ul[:, 1].unsqueeze(-1).repeat(1, 17)
return new_point
def cropBox(img, ul, br, resH, resW):
ul = ul.int()
br = (br - 1).int()
# br = br.int()
lenH = max((br[1] - ul[1]).item(), (br[0] - ul[0]).item() * resH / resW)
lenW = lenH * resW / resH
if img.dim() == 2:
img = img[np.newaxis, :]
box_shape = [(br[1] - ul[1]).item(), (br[0] - ul[0]).item()]
pad_size = [(lenH - box_shape[0]) // 2, (lenW - box_shape[1]) // 2]
# Padding Zeros
if ul[1] > 0:
img[:, :ul[1], :] = 0
if ul[0] > 0:
img[:, :, :ul[0]] = 0
if br[1] < img.shape[1] - 1:
img[:, br[1] + 1:, :] = 0
if br[0] < img.shape[2] - 1:
img[:, :, br[0] + 1:] = 0
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = np.array(
[ul[0] - pad_size[1], ul[1] - pad_size[0]], np.float32)
src[1, :] = np.array(
[br[0] + pad_size[1], br[1] + pad_size[0]], np.float32)
dst[0, :] = 0
dst[1, :] = np.array([resW - 1, resH - 1], np.float32)
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
dst_img = cv2.warpAffine(torch_to_im(img), trans,
(resW, resH), flags=cv2.INTER_LINEAR)
return im_to_torch(torch.Tensor(dst_img))
def cv_rotate(img, rot, resW, resH):
center = np.array((resW - 1, resH - 1)) / 2
rot_rad = np.pi * rot / 180
src_dir = get_dir([0, (resH - 1) * -0.5], rot_rad)
dst_dir = np.array([0, (resH - 1) * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center
src[1, :] = center + src_dir
dst[0, :] = [(resW - 1) * 0.5, (resH - 1) * 0.5]
dst[1, :] = np.array([(resW - 1) * 0.5, (resH - 1) * 0.5]) + dst_dir
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
dst_img = cv2.warpAffine(torch_to_im(img), trans,
(resW, resH), flags=cv2.INTER_LINEAR)
return im_to_torch(torch.Tensor(dst_img))
def flip(x):
assert (x.dim() == 3 or x.dim() == 4)
dim = x.dim() - 1
if '0.4.1' in torch.__version__ or '1.0' in torch.__version__:
return x.flip(dims=(dim,))
else:
is_cuda = False
if x.is_cuda:
is_cuda = True
x = x.cpu()
x = x.numpy().copy()
if x.ndim == 3:
x = np.transpose(np.fliplr(np.transpose(x, (0, 2, 1))), (0, 2, 1))
elif x.ndim == 4:
for i in range(x.shape[0]):
x[i] = np.transpose(
np.fliplr(np.transpose(x[i], (0, 2, 1))), (0, 2, 1))
# x = x.swapaxes(dim, 0)
# x = x[::-1, ...]
# x = x.swapaxes(0, dim)
x = torch.from_numpy(x.copy())
if is_cuda:
x = x
return x
def shuffleLR(x, dataset):
flipRef = dataset.flipRef
assert (x.dim() == 3 or x.dim() == 4)
for pair in flipRef:
dim0, dim1 = pair
dim0 -= 1
dim1 -= 1
if x.dim() == 4:
tmp = x[:, dim1].clone()
x[:, dim1] = x[:, dim0].clone()
x[:, dim0] = tmp.clone()
#x[:, dim0], x[:, dim1] = deepcopy((x[:, dim1], x[:, dim0]))
else:
tmp = x[dim1].clone()
x[dim1] = x[dim0].clone()
x[dim0] = tmp.clone()
#x[dim0], x[dim1] = deepcopy((x[dim1], x[dim0]))
return x
def drawMPII(inps, preds):
assert inps.dim() == 4
p_color = ['g', 'b', 'purple', 'b', 'purple',
'y', 'o', 'y', 'o', 'y', 'o',
'pink', 'r', 'pink', 'r', 'pink', 'r']
p_color = ['r', 'r', 'r', 'b', 'b', 'b',
'black', 'black', 'black', 'black',
'y', 'y', 'white', 'white', 'g', 'g']
nImg = inps.size(0)
imgs = []
for n in range(nImg):
img = to_numpy(inps[n])
img = np.transpose(img, (1, 2, 0))
imgs.append(img)
fig = plt.figure()
plt.imshow(imgs[0])
ax = fig.add_subplot(1, 1, 1)
#print(preds.shape)
for p in range(16):
x, y = preds[0][p]
cor = (round(x), round(y)), 10
ax.add_patch(plt.Circle(*cor, color=p_color[p]))
plt.axis('off')
plt.show()
return imgs
def drawCOCO(inps, preds, scores):
assert inps.dim() == 4
p_color = ['g', 'b', 'purple', 'b', 'purple',
'y', 'orange', 'y', 'orange', 'y', 'orange',
'pink', 'r', 'pink', 'r', 'pink', 'r']
nImg = inps.size(0)
imgs = []
for n in range(nImg):
img = to_numpy(inps[n])
img = np.transpose(img, (1, 2, 0))
imgs.append(img)
fig = plt.figure()
plt.imshow(imgs[0])
ax = fig.add_subplot(1, 1, 1)
#print(preds.shape)
for p in range(17):
if scores[0][p][0] < 0.2:
continue
x, y = preds[0][p]
cor = (round(x), round(y)), 3
ax.add_patch(plt.Circle(*cor, color=p_color[p]))
plt.axis('off')
plt.show()
return imgs
def get_3rd_point(a, b):
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_dir(src_point, rot_rad):
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
def findPeak(hm):
mx = maximum_filter(hm, size=5)
idx = zip(*np.where((mx == hm) * (hm > 0.1)))
candidate_points = []
for (y, x) in idx:
candidate_points.append([x, y, hm[y][x]])
if len(candidate_points) == 0:
return torch.zeros(0)
candidate_points = np.array(candidate_points)
candidate_points = candidate_points[np.lexsort(-candidate_points.T)]
return torch.Tensor(candidate_points)
def processPeaks(candidate_points, hm, pt1, pt2, inpH, inpW, resH, resW):
# type: (Tensor, Tensor, Tensor, Tensor, float, float, float, float) -> List[Tensor]
if candidate_points.shape[0] == 0: # Low Response
maxval = np.max(hm.reshape(1, -1), 1)
idx = np.argmax(hm.reshape(1, -1), 1)
x = idx % resW
y = int(idx / resW)
candidate_points = np.zeros((1, 3))
candidate_points[0, 0:1] = x
candidate_points[0, 1:2] = y
candidate_points[0, 2:3] = maxval
res_pts = []
for i in range(candidate_points.shape[0]):
x, y, maxval = candidate_points[i][0], candidate_points[i][1], candidate_points[i][2]
if bool(maxval < 0.05) and len(res_pts) > 0:
pass
else:
if bool(x > 0) and bool(x < resW - 2):
if bool(hm[int(y)][int(x) + 1] - hm[int(y)][int(x) - 1] > 0):
x += 0.25
elif bool(hm[int(y)][int(x) + 1] - hm[int(y)][int(x) - 1] < 0):
x -= 0.25
if bool(y > 0) and bool(y < resH - 2):
if bool(hm[int(y) + 1][int(x)] - hm[int(y) - 1][int(x)] > 0):
y += (0.25 * inpH / inpW)
elif bool(hm[int(y) + 1][int(x)] - hm[int(y) - 1][int(x)] < 0):
y -= (0.25 * inpH / inpW)
#pt = torch.zeros(2)
pt = np.zeros(2)
pt[0] = x + 0.2
pt[1] = y + 0.2
pt = transformBoxInvert(pt, pt1, pt2, inpH, inpW, resH, resW)
res_pt = np.zeros(3)
res_pt[:2] = pt
res_pt[2] = maxval
res_pts.append(res_pt)
if maxval < 0.05:
break
return res_pts