Video2MC / model /stmo.py
Sapphire-356's picture
add: Video2MC
95f8bbc
raw
history blame
4.05 kB
import torch
import torch.nn as nn
from model.block.vanilla_transformer_encoder import Transformer
from model.block.strided_transformer_encoder import Transformer as Transformer_reduce
class Linear(nn.Module):
def __init__(self, linear_size, p_dropout=0.25):
super(Linear, self).__init__()
self.l_size = linear_size
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.dropout = nn.Dropout(p_dropout)
#self.w1 = nn.Linear(self.l_size, self.l_size)
self.w1 = nn.Conv1d(self.l_size, self.l_size, kernel_size=1)
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
#self.w2 = nn.Linear(self.l_size, self.l_size)
self.w2 = nn.Conv1d(self.l_size, self.l_size, kernel_size=1)
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
def forward(self, x):
y = self.w1(x)
y = self.batch_norm1(y)
y = self.relu(y)
y = self.dropout(y)
y = self.w2(y)
y = self.batch_norm2(y)
y = self.relu(y)
y = self.dropout(y)
out = x + y
return out
class FCBlock(nn.Module):
def __init__(self, channel_in, channel_out, linear_size, block_num):
super(FCBlock, self).__init__()
self.linear_size = linear_size
self.block_num = block_num
self.layers = []
self.channel_in = channel_in
self.stage_num = 3
self.p_dropout = 0.1
#self.fc_1 = nn.Linear(self.channel_in, self.linear_size)
self.fc_1 = nn.Conv1d(self.channel_in, self.linear_size, kernel_size=1)
self.bn_1 = nn.BatchNorm1d(self.linear_size)
for i in range(block_num):
self.layers.append(Linear(self.linear_size, self.p_dropout))
#self.fc_2 = nn.Linear(self.linear_size, channel_out)
self.fc_2 = nn.Conv1d(self.linear_size, channel_out, kernel_size=1)
self.layers = nn.ModuleList(self.layers)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.dropout = nn.Dropout(self.p_dropout)
def forward(self, x):
x = self.fc_1(x)
x = self.bn_1(x)
x = self.relu(x)
x = self.dropout(x)
for i in range(self.block_num):
x = self.layers[i](x)
x = self.fc_2(x)
return x
class Model(nn.Module):
def __init__(self, args):
super().__init__()
layers, channel, d_hid, length = args.layers, args.channel, args.d_hid, args.frames
stride_num = args.stride_num
self.num_joints_in, self.num_joints_out = args.n_joints, args.out_joints
self.encoder = FCBlock(2*self.num_joints_in, channel, 2*channel, 1)
self.Transformer = Transformer(layers, channel, d_hid, length=length)
self.Transformer_reduce = Transformer_reduce(len(stride_num), channel, d_hid, \
length=length, stride_num=stride_num)
self.fcn = nn.Sequential(
nn.BatchNorm1d(channel, momentum=0.1),
nn.Conv1d(channel, 3*self.num_joints_out, kernel_size=1)
)
self.fcn_1 = nn.Sequential(
nn.BatchNorm1d(channel, momentum=0.1),
nn.Conv1d(channel, 3*self.num_joints_out, kernel_size=1)
)
def forward(self, x):
x = x[:, :, :, :, 0].permute(0, 2, 3, 1).contiguous()
x_shape = x.shape
x = x.view(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1).contiguous()
x = self.encoder(x)
x = x.permute(0, 2, 1).contiguous()
x = self.Transformer(x)
x_VTE = x
x_VTE = x_VTE.permute(0, 2, 1).contiguous()
x_VTE = self.fcn_1(x_VTE)
x_VTE = x_VTE.view(x_shape[0], self.num_joints_out, -1, x_VTE.shape[2])
x_VTE = x_VTE.permute(0, 2, 3, 1).contiguous().unsqueeze(dim=-1)
x = self.Transformer_reduce(x)
x = x.permute(0, 2, 1).contiguous()
x = self.fcn(x)
x = x.view(x_shape[0], self.num_joints_out, -1, x.shape[2])
x = x.permute(0, 2, 3, 1).contiguous().unsqueeze(dim=-1)
return x, x_VTE