Video2MC / joints_detectors /Alphapose /dataloader_webcam.py
Sapphire-356's picture
Change to the CPU version
aa34300
raw
history blame
19.5 kB
import os
import torch
from torch.autograd import Variable
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image, ImageDraw
from SPPE.src.utils.img import load_image, cropBox, im_to_torch
from opt import opt
from yolo.preprocess import prep_image, prep_frame, inp_to_image
from pPose_nms import pose_nms, write_json
from SPPE.src.utils.eval import getPrediction
from yolo.util import write_results, dynamic_write_results
from yolo.darknet import Darknet
from tqdm import tqdm
import cv2
import json
import numpy as np
import sys
import time
import torch.multiprocessing as mp
from multiprocessing import Process
from multiprocessing import Queue as pQueue
from threading import Thread
# import the Queue class from Python 3
if sys.version_info >= (3, 0):
from queue import Queue, LifoQueue
# otherwise, import the Queue class for Python 2.7
else:
from Queue import Queue, LifoQueue
if opt.vis_fast:
from fn import vis_frame_fast as vis_frame
else:
from fn import vis_frame
class WebcamLoader:
def __init__(self, webcam, batchSize=1, queueSize=256):
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.stream = cv2.VideoCapture(int(webcam))
assert self.stream.isOpened(), 'Cannot capture source'
self.stopped = False
# initialize the queue used to store frames read from
# the video file
self.batchSize = batchSize
self.Q = LifoQueue(maxsize=queueSize)
def start(self):
# start a thread to read frames from the file video stream
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
return self
def update(self):
# keep looping infinitely
i = 0
while True:
# otherwise, ensure the queue has room in it
if not self.Q.full():
img = []
orig_img = []
im_name = []
im_dim_list = []
for k in range(self.batchSize):
(grabbed, frame) = self.stream.read()
# if the `grabbed` boolean is `False`, then we have
# reached the end of the video file
if not grabbed:
self.stop()
return
inp_dim = int(opt.inp_dim)
img_k, orig_img_k, im_dim_list_k = prep_frame(frame, inp_dim)
img.append(img_k)
orig_img.append(orig_img_k)
im_name.append(str(i)+'.jpg')
im_dim_list.append(im_dim_list_k)
with torch.no_grad():
# Human Detection
img = torch.cat(img)
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
self.Q.put((img, orig_img, im_name, im_dim_list))
i = i+1
else:
with self.Q.mutex:
self.Q.queue.clear()
def videoinfo(self):
# indicate the video info
fourcc=int(self.stream.get(cv2.CAP_PROP_FOURCC))
fps=self.stream.get(cv2.CAP_PROP_FPS)
frameSize=(int(self.stream.get(cv2.CAP_PROP_FRAME_WIDTH)),int(self.stream.get(cv2.CAP_PROP_FRAME_HEIGHT)))
return (fourcc,fps,frameSize)
def getitem(self):
# return next frame in the queue
return self.Q.get()
def len(self):
# return queue size
return self.Q.qsize()
def stop(self):
# indicate that the thread should be stopped
self.stopped = True
class DetectionLoader:
def __init__(self, dataloder, batchSize=1, queueSize=1024):
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.det_model = Darknet("yolo/cfg/yolov3-spp.cfg")
self.det_model.load_weights('models/yolo/yolov3-spp.weights')
self.det_model.net_info['height'] = opt.inp_dim
self.det_inp_dim = int(self.det_model.net_info['height'])
assert self.det_inp_dim % 32 == 0
assert self.det_inp_dim > 32
self.det_model
self.det_model.eval()
self.stopped = False
self.dataloder = dataloder
self.batchSize = batchSize
# initialize the queue used to store frames read from
# the video file
self.Q = LifoQueue(maxsize=queueSize)
def start(self):
# start a thread to read frames from the file video stream
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
return self
def update(self):
# keep looping the whole dataset
while True:
img, orig_img, im_name, im_dim_list = self.dataloder.getitem()
with self.dataloder.Q.mutex:
self.dataloder.Q.queue.clear()
with torch.no_grad():
# Human Detection
img = img
prediction = self.det_model(img, CUDA=True)
# NMS process
dets = dynamic_write_results(prediction, opt.confidence,
opt.num_classes, nms=True, nms_conf=opt.nms_thesh)
if isinstance(dets, int) or dets.shape[0] == 0:
for k in range(len(orig_img)):
if self.Q.full():
time.sleep(2)
self.Q.put((orig_img[k], im_name[k], None, None, None, None, None))
continue
dets = dets.cpu()
im_dim_list = torch.index_select(im_dim_list,0, dets[:, 0].long())
scaling_factor = torch.min(self.det_inp_dim / im_dim_list, 1)[0].view(-1, 1)
# coordinate transfer
dets[:, [1, 3]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
dets[:, [2, 4]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2
dets[:, 1:5] /= scaling_factor
for j in range(dets.shape[0]):
dets[j, [1, 3]] = torch.clamp(dets[j, [1, 3]], 0.0, im_dim_list[j, 0])
dets[j, [2, 4]] = torch.clamp(dets[j, [2, 4]], 0.0, im_dim_list[j, 1])
boxes = dets[:, 1:5]
scores = dets[:, 5:6]
for k in range(len(orig_img)):
boxes_k = boxes[dets[:,0]==k]
if isinstance(boxes_k, int) or boxes_k.shape[0] == 0:
if self.Q.full():
time.sleep(2)
self.Q.put((orig_img[k], im_name[k], None, None, None, None, None))
continue
inps = torch.zeros(boxes_k.size(0), 3, opt.inputResH, opt.inputResW)
pt1 = torch.zeros(boxes_k.size(0), 2)
pt2 = torch.zeros(boxes_k.size(0), 2)
if self.Q.full():
time.sleep(2)
self.Q.put((orig_img[k], im_name[k], boxes_k, scores[dets[:,0]==k], inps, pt1, pt2))
def read(self):
# return next frame in the queue
return self.Q.get()
def len(self):
# return queue len
return self.Q.qsize()
class DetectionProcessor:
def __init__(self, detectionLoader, queueSize=1024):
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.detectionLoader = detectionLoader
self.stopped = False
# initialize the queue used to store data
self.Q = LifoQueue(maxsize=queueSize)
def start(self):
# start a thread to read frames from the file video stream
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
return self
def update(self):
# keep looping the whole dataset
while True:
with torch.no_grad():
(orig_img, im_name, boxes, scores, inps, pt1, pt2) = self.detectionLoader.read()
with self.detectionLoader.Q.mutex:
self.detectionLoader.Q.queue.clear()
if boxes is None or boxes.nelement() == 0:
while self.Q.full():
time.sleep(0.2)
self.Q.put((None, orig_img, im_name, boxes, scores, None, None))
continue
inp = im_to_torch(cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB))
inps, pt1, pt2 = crop_from_dets(inp, boxes, inps, pt1, pt2)
while self.Q.full():
time.sleep(0.2)
self.Q.put((inps, orig_img, im_name, boxes, scores, pt1, pt2))
def read(self):
# return next frame in the queue
return self.Q.get()
def len(self):
# return queue len
return self.Q.qsize()
class WebcamDetectionLoader:
def __init__(self, webcam = 0, batchSize=1, queueSize=256):
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.det_model = Darknet("yolo/cfg/yolov3-spp.cfg")
self.det_model.load_weights('models/yolo/yolov3-spp.weights')
self.det_model.net_info['height'] = opt.inp_dim
self.det_inp_dim = int(self.det_model.net_info['height'])
assert self.det_inp_dim % 32 == 0
assert self.det_inp_dim > 32
self.det_model
self.det_model.eval()
self.stream = cv2.VideoCapture(int(webcam))
assert self.stream.isOpened(), 'Cannot open webcam'
self.stopped = False
self.batchSize = batchSize
# initialize the queue used to store frames read from
# the video file
self.Q = LifoQueue(maxsize=queueSize)
def len(self):
return self.Q.qsize()
def start(self):
# start a thread to read frames from the file video stream
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
return self
def update(self):
# keep looping
while True:
img = []
inp = []
orig_img = []
im_name = []
im_dim_list = []
for k in range(self.batchSize):
(grabbed, frame) = self.stream.read()
if not grabbed:
continue
# process and add the frame to the queue
inp_dim = int(opt.inp_dim)
img_k, orig_img_k, im_dim_list_k = prep_frame(frame, inp_dim)
inp_k = im_to_torch(orig_img_k)
img.append(img_k)
inp.append(inp_k)
orig_img.append(orig_img_k)
im_dim_list.append(im_dim_list_k)
with torch.no_grad():
ht = inp[0].size(1)
wd = inp[0].size(2)
# Human Detection
img = Variable(torch.cat(img))
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
im_dim_list = im_dim_list
prediction = self.det_model(img, CUDA=True)
# NMS process
dets = dynamic_write_results(prediction, opt.confidence,
opt.num_classes, nms=True, nms_conf=opt.nms_thesh)
if isinstance(dets, int) or dets.shape[0] == 0:
for k in range(len(inp)):
if self.Q.full():
with self.Q.mutex:
self.Q.queue.clear()
self.Q.put((inp[k], orig_img[k], None, None))
continue
im_dim_list = torch.index_select(im_dim_list,0, dets[:, 0].long())
scaling_factor = torch.min(self.det_inp_dim / im_dim_list, 1)[0].view(-1, 1)
# coordinate transfer
dets[:, [1, 3]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
dets[:, [2, 4]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2
dets[:, 1:5] /= scaling_factor
for j in range(dets.shape[0]):
dets[j, [1, 3]] = torch.clamp(dets[j, [1, 3]], 0.0, im_dim_list[j, 0])
dets[j, [2, 4]] = torch.clamp(dets[j, [2, 4]], 0.0, im_dim_list[j, 1])
boxes = dets[:, 1:5].cpu()
scores = dets[:, 5:6].cpu()
for k in range(len(inp)):
if self.Q.full():
with self.Q.mutex:
self.Q.queue.clear()
self.Q.put((inp[k], orig_img[k], boxes[dets[:,0]==k], scores[dets[:,0]==k]))
def videoinfo(self):
# indicate the video info
fourcc=int(self.stream.get(cv2.CAP_PROP_FOURCC))
fps=self.stream.get(cv2.CAP_PROP_FPS)
frameSize=(int(self.stream.get(cv2.CAP_PROP_FRAME_WIDTH)),int(self.stream.get(cv2.CAP_PROP_FRAME_HEIGHT)))
return (fourcc,fps,frameSize)
def read(self):
# return next frame in the queue
return self.Q.get()
def more(self):
# return True if there are still frames in the queue
return self.Q.qsize() > 0
def stop(self):
# indicate that the thread should be stopped
self.stopped = True
class DataWriter:
def __init__(self, save_video=False,
savepath='examples/res/1.avi', fourcc=cv2.VideoWriter_fourcc(*'XVID'), fps=25, frameSize=(640,480),
queueSize=1024):
if save_video:
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.stream = cv2.VideoWriter(savepath, fourcc, fps, frameSize)
assert self.stream.isOpened(), 'Cannot open video for writing'
self.save_video = save_video
self.stopped = False
self.final_result = []
# initialize the queue used to store frames read from
# the video file
self.Q = Queue(maxsize=queueSize)
if opt.save_img:
if not os.path.exists(opt.outputpath + '/vis'):
os.mkdir(opt.outputpath + '/vis')
def start(self):
# start a thread to read frames from the file video stream
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
return self
def update(self):
# keep looping infinitely
while True:
# if the thread indicator variable is set, stop the
# thread
if self.stopped:
if self.save_video:
self.stream.release()
return
# otherwise, ensure the queue is not empty
if not self.Q.empty():
(boxes, scores, hm_data, pt1, pt2, orig_img, im_name) = self.Q.get()
orig_img = np.array(orig_img, dtype=np.uint8)
if boxes is None:
if opt.save_img or opt.save_video or opt.vis:
img = orig_img
if opt.vis:
cv2.imshow("AlphaPose Demo", img)
cv2.waitKey(30)
if opt.save_img:
cv2.imwrite(os.path.join(opt.outputpath, 'vis', im_name), img)
if opt.save_video:
self.stream.write(img)
else:
# location prediction (n, kp, 2) | score prediction (n, kp, 1)
preds_hm, preds_img, preds_scores = getPrediction(
hm_data, pt1, pt2, opt.inputResH, opt.inputResW, opt.outputResH, opt.outputResW)
result = pose_nms(boxes, scores, preds_img, preds_scores)
result = {
'imgname': im_name,
'result': result
}
self.final_result.append(result)
if opt.save_img or opt.save_video or opt.vis:
img = vis_frame(orig_img, result)
if opt.vis:
cv2.imshow("AlphaPose Demo", img)
cv2.waitKey(30)
if opt.save_img:
cv2.imwrite(os.path.join(opt.outputpath, 'vis', im_name), img)
if opt.save_video:
self.stream.write(img)
else:
time.sleep(0.1)
def running(self):
# indicate that the thread is still running
time.sleep(0.2)
return not self.Q.empty()
def save(self, boxes, scores, hm_data, pt1, pt2, orig_img, im_name):
# save next frame in the queue
self.Q.put((boxes, scores, hm_data, pt1, pt2, orig_img, im_name))
def stop(self):
# indicate that the thread should be stopped
self.stopped = True
time.sleep(0.2)
def results(self):
# return final result
return self.final_result
def len(self):
# return queue len
return self.Q.qsize()
class Mscoco(data.Dataset):
def __init__(self, train=True, sigma=1,
scale_factor=(0.2, 0.3), rot_factor=40, label_type='Gaussian'):
self.img_folder = '../data/coco/images' # root image folders
self.is_train = train # training set or test set
self.inputResH = opt.inputResH
self.inputResW = opt.inputResW
self.outputResH = opt.outputResH
self.outputResW = opt.outputResW
self.sigma = sigma
self.scale_factor = scale_factor
self.rot_factor = rot_factor
self.label_type = label_type
self.nJoints_coco = 17
self.nJoints_mpii = 16
self.nJoints = 33
self.accIdxs = (1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17)
self.flipRef = ((2, 3), (4, 5), (6, 7),
(8, 9), (10, 11), (12, 13),
(14, 15), (16, 17))
def __getitem__(self, index):
pass
def __len__(self):
pass
def crop_from_dets(img, boxes, inps, pt1, pt2):
'''
Crop human from origin image according to Dectecion Results
'''
imght = img.size(1)
imgwidth = img.size(2)
tmp_img = img
tmp_img[0].add_(-0.406)
tmp_img[1].add_(-0.457)
tmp_img[2].add_(-0.480)
for i, box in enumerate(boxes):
upLeft = torch.Tensor(
(float(box[0]), float(box[1])))
bottomRight = torch.Tensor(
(float(box[2]), float(box[3])))
ht = bottomRight[1] - upLeft[1]
width = bottomRight[0] - upLeft[0]
if width > 100:
scaleRate = 0.2
else:
scaleRate = 0.3
upLeft[0] = max(0, upLeft[0] - width * scaleRate / 2)
upLeft[1] = max(0, upLeft[1] - ht * scaleRate / 2)
bottomRight[0] = max(
min(imgwidth - 1, bottomRight[0] + width * scaleRate / 2), upLeft[0] + 5)
bottomRight[1] = max(
min(imght - 1, bottomRight[1] + ht * scaleRate / 2), upLeft[1] + 5)
inps[i] = cropBox(tmp_img.clone(), upLeft, bottomRight, opt.inputResH, opt.inputResW)
pt1[i] = upLeft
pt2[i] = bottomRight
return inps, pt1, pt2