Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
fc_out = 256 | |
fc_unit = 1024 | |
class refine(nn.Module): | |
def __init__(self, opt): | |
super().__init__() | |
out_seqlen = 1 | |
fc_in = opt.out_channels*2*out_seqlen*opt.n_joints | |
fc_out = opt.in_channels * opt.n_joints | |
self.post_refine = nn.Sequential( | |
nn.Linear(fc_in, fc_unit), | |
nn.ReLU(), | |
nn.Dropout(0.5,inplace=True), | |
nn.Linear(fc_unit, fc_out), | |
nn.Sigmoid() | |
) | |
def forward(self, x, x_1): | |
N, T, V,_ = x.size() | |
x_in = torch.cat((x, x_1), -1) | |
x_in = x_in.view(N, -1) | |
score = self.post_refine(x_in).view(N,T,V,2) | |
score_cm = Variable(torch.ones(score.size()), requires_grad=False).cuda() - score | |
x_out = x.clone() | |
x_out[:, :, :, :2] = score * x[:, :, :, :2] + score_cm * x_1[:, :, :, :2] | |
return x_out | |