Video2MC / common /model.py
Sapphire-356's picture
add: Video2MC
95f8bbc
raw
history blame
8.05 kB
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch.nn as nn
class TemporalModelBase(nn.Module):
"""
Do not instantiate this class.
"""
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, causal, dropout, channels):
super().__init__()
# Validate input
for fw in filter_widths:
assert fw % 2 != 0, 'Only odd filter widths are supported'
self.num_joints_in = num_joints_in
self.in_features = in_features
self.num_joints_out = num_joints_out
self.filter_widths = filter_widths
self.drop = nn.Dropout(dropout)
self.relu = nn.ReLU(inplace=True)
self.pad = [filter_widths[0] // 2]
self.expand_bn = nn.BatchNorm1d(channels, momentum=0.1)
self.shrink = nn.Conv1d(channels, num_joints_out * 3, 1)
def set_bn_momentum(self, momentum):
self.expand_bn.momentum = momentum
for bn in self.layers_bn:
bn.momentum = momentum
def receptive_field(self):
"""
Return the total receptive field of this model as # of frames.
"""
frames = 0
for f in self.pad:
frames += f
return 1 + 2 * frames
def total_causal_shift(self):
"""
Return the asymmetric offset for sequence padding.
The returned value is typically 0 if causal convolutions are disabled,
otherwise it is half the receptive field.
"""
frames = self.causal_shift[0]
next_dilation = self.filter_widths[0]
for i in range(1, len(self.filter_widths)):
frames += self.causal_shift[i] * next_dilation
next_dilation *= self.filter_widths[i]
return frames
def forward(self, x):
assert len(x.shape) == 4
assert x.shape[-2] == self.num_joints_in
assert x.shape[-1] == self.in_features
sz = x.shape[:3]
x = x.view(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1)
x = self._forward_blocks(x)
x = x.permute(0, 2, 1)
x = x.view(sz[0], -1, self.num_joints_out, 3)
return x
class TemporalModel(TemporalModelBase):
"""
Reference 3D pose estimation model with temporal convolutions.
This implementation can be used for all use-cases.
"""
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, causal=False, dropout=0.25, channels=1024, dense=False):
"""
Initialize this model.
Arguments:
num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
in_features -- number of input features for each joint (typically 2 for 2D input)
num_joints_out -- number of output joints (can be different than input)
filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
causal -- use causal convolutions instead of symmetric convolutions (for real-time applications)
dropout -- dropout probability
channels -- number of convolution channels
dense -- use regular dense convolutions instead of dilated convolutions (ablation experiment)
"""
super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels)
self.expand_conv = nn.Conv1d(num_joints_in * in_features, channels, filter_widths[0], bias=False)
layers_conv = []
layers_bn = []
self.causal_shift = [(filter_widths[0]) // 2 if causal else 0]
next_dilation = filter_widths[0]
for i in range(1, len(filter_widths)):
self.pad.append((filter_widths[i] - 1) * next_dilation // 2)
self.causal_shift.append((filter_widths[i] // 2 * next_dilation) if causal else 0)
layers_conv.append(nn.Conv1d(channels, channels,
filter_widths[i] if not dense else (2 * self.pad[-1] + 1),
dilation=next_dilation if not dense else 1,
bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
next_dilation *= filter_widths[i]
self.layers_conv = nn.ModuleList(layers_conv)
self.layers_bn = nn.ModuleList(layers_bn)
def _forward_blocks(self, x):
x = self.drop(self.relu(self.expand_bn(self.expand_conv(x))))
for i in range(len(self.pad) - 1):
pad = self.pad[i + 1]
shift = self.causal_shift[i + 1]
# clip
res = x[:, :, pad + shift: x.shape[2] - pad + shift]
x = self.drop(self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x))))
x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x))))
x = self.shrink(x)
return x
class TemporalModelOptimized1f(TemporalModelBase):
"""
3D pose estimation model optimized for single-frame batching, i.e.
where batches have input length = receptive field, and output length = 1.
This scenario is only used for training when stride == 1.
This implementation replaces dilated convolutions with strided convolutions
to avoid generating unused intermediate results. The weights are interchangeable
with the reference implementation.
"""
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, causal=False, dropout=0.25, channels=1024):
"""
Initialize this model.
Arguments:
num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
in_features -- number of input features for each joint (typically 2 for 2D input)
num_joints_out -- number of output joints (can be different than input)
filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
causal -- use causal convolutions instead of symmetric convolutions (for real-time applications)
dropout -- dropout probability
channels -- number of convolution channels
"""
super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels)
self.expand_conv = nn.Conv1d(num_joints_in * in_features, channels, filter_widths[0], stride=filter_widths[0], bias=False)
layers_conv = []
layers_bn = []
self.causal_shift = [(filter_widths[0] // 2) if causal else 0]
next_dilation = filter_widths[0]
for i in range(1, len(filter_widths)):
self.pad.append((filter_widths[i] - 1) * next_dilation // 2)
self.causal_shift.append((filter_widths[i] // 2) if causal else 0)
layers_conv.append(nn.Conv1d(channels, channels, filter_widths[i], stride=filter_widths[i], bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
next_dilation *= filter_widths[i]
self.layers_conv = nn.ModuleList(layers_conv)
self.layers_bn = nn.ModuleList(layers_bn)
def _forward_blocks(self, x):
x = self.drop(self.relu(self.expand_bn(self.expand_conv(x))))
for i in range(len(self.pad) - 1):
res = x[:, :, self.causal_shift[i + 1] + self.filter_widths[i + 1] // 2:: self.filter_widths[i + 1]]
x = self.drop(self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x))))
x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x))))
x = self.shrink(x)
return x