Sapphire-356's picture
add: Video2MC
95f8bbc
raw
history blame
26 kB
input: "image"
input_dim: 1
input_dim: 3
input_dim: 1 # Original: 368
input_dim: 1 # Original: 368
# input: "weights"
# input_dim: 1
# input_dim: 71
# input_dim: 184
# input_dim: 184
# input: "labels"
# input_dim: 1
# input_dim: 71
# input_dim: 184
# input_dim: 184
layer {
name: "conv1_1"
type: "Convolution"
bottom: "image"
top: "conv1_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1_1_re"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1_2_re"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv2_1_re"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv2_2_re"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv3_1_re"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv3_2_re"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv3_3_re"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "conv3_4"
type: "Convolution"
bottom: "conv3_3"
top: "conv3_4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv3_4_re"
type: "ReLU"
bottom: "conv3_4"
top: "conv3_4"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_4"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv4_1_re"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv4_2_re"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv4_3_re"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "conv4_4"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv4_4_re"
type: "ReLU"
bottom: "conv4_4"
top: "conv4_4"
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "conv4_4"
top: "conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv5_1_re"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv5_2_re"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3_CPM"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3_CPM"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv5_3_CPM_re"
type: "ReLU"
bottom: "conv5_3_CPM"
top: "conv5_3_CPM"
}
layer {
name: "conv6_1_CPM"
type: "Convolution"
bottom: "conv5_3_CPM"
top: "conv6_1_CPM"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv6_1_CPM_re"
type: "ReLU"
bottom: "conv6_1_CPM"
top: "conv6_1_CPM"
}
layer {
name: "conv6_2_CPM"
type: "Convolution"
bottom: "conv6_1_CPM"
top: "conv6_2_CPM"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 71
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "features_in_stage_2"
type: "Concat"
bottom: "conv6_2_CPM"
bottom: "conv5_3_CPM"
top: "features_in_stage_2"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage2"
type: "Convolution"
bottom: "features_in_stage_2"
top: "Mconv1_stage2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv1_stage2_re"
type: "ReLU"
bottom: "Mconv1_stage2"
top: "Mconv1_stage2"
}
layer {
name: "Mconv2_stage2"
type: "Convolution"
bottom: "Mconv1_stage2"
top: "Mconv2_stage2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv2_stage2_re"
type: "ReLU"
bottom: "Mconv2_stage2"
top: "Mconv2_stage2"
}
layer {
name: "Mconv3_stage2"
type: "Convolution"
bottom: "Mconv2_stage2"
top: "Mconv3_stage2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv3_stage2_re"
type: "ReLU"
bottom: "Mconv3_stage2"
top: "Mconv3_stage2"
}
layer {
name: "Mconv4_stage2"
type: "Convolution"
bottom: "Mconv3_stage2"
top: "Mconv4_stage2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv4_stage2_re"
type: "ReLU"
bottom: "Mconv4_stage2"
top: "Mconv4_stage2"
}
layer {
name: "Mconv5_stage2"
type: "Convolution"
bottom: "Mconv4_stage2"
top: "Mconv5_stage2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv5_stage2_re"
type: "ReLU"
bottom: "Mconv5_stage2"
top: "Mconv5_stage2"
}
layer {
name: "Mconv6_stage2"
type: "Convolution"
bottom: "Mconv5_stage2"
top: "Mconv6_stage2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv6_stage2_re"
type: "ReLU"
bottom: "Mconv6_stage2"
top: "Mconv6_stage2"
}
layer {
name: "Mconv7_stage2"
type: "Convolution"
bottom: "Mconv6_stage2"
top: "Mconv7_stage2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 71
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "features_in_stage_3"
type: "Concat"
bottom: "Mconv7_stage2"
bottom: "conv5_3_CPM"
top: "features_in_stage_3"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage3"
type: "Convolution"
bottom: "features_in_stage_3"
top: "Mconv1_stage3"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv1_stage3_re"
type: "ReLU"
bottom: "Mconv1_stage3"
top: "Mconv1_stage3"
}
layer {
name: "Mconv2_stage3"
type: "Convolution"
bottom: "Mconv1_stage3"
top: "Mconv2_stage3"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv2_stage3_re"
type: "ReLU"
bottom: "Mconv2_stage3"
top: "Mconv2_stage3"
}
layer {
name: "Mconv3_stage3"
type: "Convolution"
bottom: "Mconv2_stage3"
top: "Mconv3_stage3"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv3_stage3_re"
type: "ReLU"
bottom: "Mconv3_stage3"
top: "Mconv3_stage3"
}
layer {
name: "Mconv4_stage3"
type: "Convolution"
bottom: "Mconv3_stage3"
top: "Mconv4_stage3"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv4_stage3_re"
type: "ReLU"
bottom: "Mconv4_stage3"
top: "Mconv4_stage3"
}
layer {
name: "Mconv5_stage3"
type: "Convolution"
bottom: "Mconv4_stage3"
top: "Mconv5_stage3"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv5_stage3_re"
type: "ReLU"
bottom: "Mconv5_stage3"
top: "Mconv5_stage3"
}
layer {
name: "Mconv6_stage3"
type: "Convolution"
bottom: "Mconv5_stage3"
top: "Mconv6_stage3"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv6_stage3_re"
type: "ReLU"
bottom: "Mconv6_stage3"
top: "Mconv6_stage3"
}
layer {
name: "Mconv7_stage3"
type: "Convolution"
bottom: "Mconv6_stage3"
top: "Mconv7_stage3"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 71
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "features_in_stage_4"
type: "Concat"
bottom: "Mconv7_stage3"
bottom: "conv5_3_CPM"
top: "features_in_stage_4"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage4"
type: "Convolution"
bottom: "features_in_stage_4"
top: "Mconv1_stage4"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv1_stage4_re"
type: "ReLU"
bottom: "Mconv1_stage4"
top: "Mconv1_stage4"
}
layer {
name: "Mconv2_stage4"
type: "Convolution"
bottom: "Mconv1_stage4"
top: "Mconv2_stage4"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv2_stage4_re"
type: "ReLU"
bottom: "Mconv2_stage4"
top: "Mconv2_stage4"
}
layer {
name: "Mconv3_stage4"
type: "Convolution"
bottom: "Mconv2_stage4"
top: "Mconv3_stage4"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv3_stage4_re"
type: "ReLU"
bottom: "Mconv3_stage4"
top: "Mconv3_stage4"
}
layer {
name: "Mconv4_stage4"
type: "Convolution"
bottom: "Mconv3_stage4"
top: "Mconv4_stage4"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv4_stage4_re"
type: "ReLU"
bottom: "Mconv4_stage4"
top: "Mconv4_stage4"
}
layer {
name: "Mconv5_stage4"
type: "Convolution"
bottom: "Mconv4_stage4"
top: "Mconv5_stage4"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv5_stage4_re"
type: "ReLU"
bottom: "Mconv5_stage4"
top: "Mconv5_stage4"
}
layer {
name: "Mconv6_stage4"
type: "Convolution"
bottom: "Mconv5_stage4"
top: "Mconv6_stage4"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv6_stage4_re"
type: "ReLU"
bottom: "Mconv6_stage4"
top: "Mconv6_stage4"
}
layer {
name: "Mconv7_stage4"
type: "Convolution"
bottom: "Mconv6_stage4"
top: "Mconv7_stage4"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 71
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "features_in_stage_5"
type: "Concat"
bottom: "Mconv7_stage4"
bottom: "conv5_3_CPM"
top: "features_in_stage_5"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage5"
type: "Convolution"
bottom: "features_in_stage_5"
top: "Mconv1_stage5"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv1_stage5_re"
type: "ReLU"
bottom: "Mconv1_stage5"
top: "Mconv1_stage5"
}
layer {
name: "Mconv2_stage5"
type: "Convolution"
bottom: "Mconv1_stage5"
top: "Mconv2_stage5"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv2_stage5_re"
type: "ReLU"
bottom: "Mconv2_stage5"
top: "Mconv2_stage5"
}
layer {
name: "Mconv3_stage5"
type: "Convolution"
bottom: "Mconv2_stage5"
top: "Mconv3_stage5"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv3_stage5_re"
type: "ReLU"
bottom: "Mconv3_stage5"
top: "Mconv3_stage5"
}
layer {
name: "Mconv4_stage5"
type: "Convolution"
bottom: "Mconv3_stage5"
top: "Mconv4_stage5"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv4_stage5_re"
type: "ReLU"
bottom: "Mconv4_stage5"
top: "Mconv4_stage5"
}
layer {
name: "Mconv5_stage5"
type: "Convolution"
bottom: "Mconv4_stage5"
top: "Mconv5_stage5"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv5_stage5_re"
type: "ReLU"
bottom: "Mconv5_stage5"
top: "Mconv5_stage5"
}
layer {
name: "Mconv6_stage5"
type: "Convolution"
bottom: "Mconv5_stage5"
top: "Mconv6_stage5"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv6_stage5_re"
type: "ReLU"
bottom: "Mconv6_stage5"
top: "Mconv6_stage5"
}
layer {
name: "Mconv7_stage5"
type: "Convolution"
bottom: "Mconv6_stage5"
top: "Mconv7_stage5"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 71
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "features_in_stage_6"
type: "Concat"
bottom: "Mconv7_stage5"
bottom: "conv5_3_CPM"
top: "features_in_stage_6"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage6"
type: "Convolution"
bottom: "features_in_stage_6"
top: "Mconv1_stage6"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv1_stage6_re"
type: "ReLU"
bottom: "Mconv1_stage6"
top: "Mconv1_stage6"
}
layer {
name: "Mconv2_stage6"
type: "Convolution"
bottom: "Mconv1_stage6"
top: "Mconv2_stage6"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv2_stage6_re"
type: "ReLU"
bottom: "Mconv2_stage6"
top: "Mconv2_stage6"
}
layer {
name: "Mconv3_stage6"
type: "Convolution"
bottom: "Mconv2_stage6"
top: "Mconv3_stage6"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv3_stage6_re"
type: "ReLU"
bottom: "Mconv3_stage6"
top: "Mconv3_stage6"
}
layer {
name: "Mconv4_stage6"
type: "Convolution"
bottom: "Mconv3_stage6"
top: "Mconv4_stage6"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv4_stage6_re"
type: "ReLU"
bottom: "Mconv4_stage6"
top: "Mconv4_stage6"
}
layer {
name: "Mconv5_stage6"
type: "Convolution"
bottom: "Mconv4_stage6"
top: "Mconv5_stage6"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv5_stage6_re"
type: "ReLU"
bottom: "Mconv5_stage6"
top: "Mconv5_stage6"
}
layer {
name: "Mconv6_stage6"
type: "Convolution"
bottom: "Mconv5_stage6"
top: "Mconv6_stage6"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv6_stage6_re"
type: "ReLU"
bottom: "Mconv6_stage6"
top: "Mconv6_stage6"
}
layer {
name: "Mconv7_stage6"
type: "Convolution"
bottom: "Mconv6_stage6"
# top: "Mconv7_stage6"
top: "net_output"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 71
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}