File size: 6,417 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
 
 
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
 
 
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
fb96f4f
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -----------------------------------------------------
# Copyright (c) Shanghai Jiao Tong University. All rights reserved.
# Written by Jiefeng Li ([email protected])
# -----------------------------------------------------

import torch
import torch.utils.data
from .utils.dataset import coco
from opt import opt
from tqdm import tqdm
from models.FastPose import createModel
from .utils.eval import DataLogger, accuracy
from .utils.img import flip, shuffleLR
from .evaluation import prediction

from tensorboardX import SummaryWriter
import os


def train(train_loader, m, criterion, optimizer, writer):
    lossLogger = DataLogger()
    accLogger = DataLogger()
    m.train()

    train_loader_desc = tqdm(train_loader)

    for i, (inps, labels, setMask, imgset) in enumerate(train_loader_desc):
        inps = inps.requires_grad_()
        labels = labels
        setMask = setMask
        out = m(inps)

        loss = criterion(out.mul(setMask), labels)

        acc = accuracy(out.data.mul(setMask), labels.data, train_loader.dataset)

        accLogger.update(acc[0], inps.size(0))
        lossLogger.update(loss.item(), inps.size(0))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        opt.trainIters += 1
        # Tensorboard
        writer.add_scalar(
            'Train/Loss', lossLogger.avg, opt.trainIters)
        writer.add_scalar(
            'Train/Acc', accLogger.avg, opt.trainIters)

        # TQDM
        train_loader_desc.set_description(
            'loss: {loss:.8f} | acc: {acc:.2f}'.format(
                loss=lossLogger.avg,
                acc=accLogger.avg * 100)
        )

    train_loader_desc.close()

    return lossLogger.avg, accLogger.avg


def valid(val_loader, m, criterion, optimizer, writer):
    lossLogger = DataLogger()
    accLogger = DataLogger()
    m.eval()

    val_loader_desc = tqdm(val_loader)

    for i, (inps, labels, setMask, imgset) in enumerate(val_loader_desc):
        inps = inps
        labels = labels
        setMask = setMask

        with torch.no_grad():
            out = m(inps)

            loss = criterion(out.mul(setMask), labels)

            flip_out = m(flip(inps))
            flip_out = flip(shuffleLR(flip_out, val_loader.dataset))

            out = (flip_out + out) / 2

        acc = accuracy(out.mul(setMask), labels, val_loader.dataset)

        lossLogger.update(loss.item(), inps.size(0))
        accLogger.update(acc[0], inps.size(0))

        opt.valIters += 1

        # Tensorboard
        writer.add_scalar(
            'Valid/Loss', lossLogger.avg, opt.valIters)
        writer.add_scalar(
            'Valid/Acc', accLogger.avg, opt.valIters)

        val_loader_desc.set_description(
            'loss: {loss:.8f} | acc: {acc:.2f}'.format(
                loss=lossLogger.avg,
                acc=accLogger.avg * 100)
        )

    val_loader_desc.close()

    return lossLogger.avg, accLogger.avg


def main():

    # Model Initialize
    m = createModel()
    if opt.loadModel:
        print('Loading Model from {}'.format(opt.loadModel))
        m.load_state_dict(torch.load(opt.loadModel, map_location=torch.device('cpu')))
        if not os.path.exists("../exp/{}/{}".format(opt.dataset, opt.expID)):
            try:
                os.mkdir("../exp/{}/{}".format(opt.dataset, opt.expID))
            except FileNotFoundError:
                os.mkdir("../exp/{}".format(opt.dataset))
                os.mkdir("../exp/{}/{}".format(opt.dataset, opt.expID))
    else:
        print('Create new model')
        if not os.path.exists("../exp/{}/{}".format(opt.dataset, opt.expID)):
            try:
                os.mkdir("../exp/{}/{}".format(opt.dataset, opt.expID))
            except FileNotFoundError:
                os.mkdir("../exp/{}".format(opt.dataset))
                os.mkdir("../exp/{}/{}".format(opt.dataset, opt.expID))

    criterion = torch.nn.MSELoss()

    if opt.optMethod == 'rmsprop':
        optimizer = torch.optim.RMSprop(m.parameters(),
                                        lr=opt.LR,
                                        momentum=opt.momentum,
                                        weight_decay=opt.weightDecay)
    elif opt.optMethod == 'adam':
        optimizer = torch.optim.Adam(
            m.parameters(),
            lr=opt.LR
        )
    else:
        raise Exception

    writer = SummaryWriter(
        '.tensorboard/{}/{}'.format(opt.dataset, opt.expID))

    # Prepare Dataset
    if opt.dataset == 'coco':
        train_dataset = coco.Mscoco(train=True)
        val_dataset = coco.Mscoco(train=False)

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=opt.trainBatch, shuffle=True, num_workers=opt.nThreads, pin_memory=True)

    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=opt.validBatch, shuffle=False, num_workers=opt.nThreads, pin_memory=True)

    # Model Transfer
    m = torch.nn.DataParallel(m)

    # Start Training
    for i in range(opt.nEpochs):
        opt.epoch = i

        print('############# Starting Epoch {} #############'.format(opt.epoch))
        loss, acc = train(train_loader, m, criterion, optimizer, writer)

        print('Train-{idx:d} epoch | loss:{loss:.8f} | acc:{acc:.4f}'.format(
            idx=opt.epoch,
            loss=loss,
            acc=acc
        ))

        opt.acc = acc
        opt.loss = loss
        m_dev = m.module
        if i % opt.snapshot == 0:
            torch.save(
                m_dev.state_dict(), '../exp/{}/{}/model_{}.pkl'.format(opt.dataset, opt.expID, opt.epoch))
            torch.save(
                opt, '../exp/{}/{}/option.pkl'.format(opt.dataset, opt.expID, opt.epoch))
            torch.save(
                optimizer, '../exp/{}/{}/optimizer.pkl'.format(opt.dataset, opt.expID))

        loss, acc = valid(val_loader, m, criterion, optimizer, writer)

        print('Valid-{idx:d} epoch | loss:{loss:.8f} | acc:{acc:.4f}'.format(
            idx=i,
            loss=loss,
            acc=acc
        ))

        '''
        if opt.dataset != 'mpii':
            with torch.no_grad():
                mAP, mAP5 = prediction(m)

            print('Prediction-{idx:d} epoch | mAP:{mAP:.3f} | mAP0.5:{mAP5:.3f}'.format(
                idx=i,
                mAP=mAP,
                mAP5=mAP5
            ))
        '''
    writer.close()


if __name__ == '__main__':
    main()