File size: 4,483 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -----------------------------------------------------
# Copyright (c) Shanghai Jiao Tong University. All rights reserved.
# Written by Jiefeng Li ([email protected])
# -----------------------------------------------------

import torch
import torch.nn as nn
import torch.utils.data
from .predict.annot.coco_minival import Mscoco_minival
from .predict.p_poseNMS import pose_nms, write_json
import numpy as np
from .opt import opt
from tqdm import tqdm
from .utils.img import flip, shuffleLR, vis_frame
from .util.eval import getPrediction
from .util.eval import getmap
import os
import cv2


def gaussian(size):
    '''
    Generate a 2D gaussian array
    '''
    sigma = 1
    x = np.arange(0, size, 1, float)
    y = x[:, np.newaxis]
    x0 = y0 = size // 2
    sigma = size / 4.0
    # The gaussian is not normalized, we want the center value to equal 1
    g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
    g = g[np.newaxis, :]
    return g


gaussian_kernel = nn.Conv2d(17, 17, kernel_size=4 * 1 + 1,
                            stride=1, padding=2, groups=17, bias=False)

g = torch.from_numpy(gaussian(4 * 1 + 1)).clone()
g = torch.unsqueeze(g, 1)
g = g.repeat(17, 1, 1, 1)
gaussian_kernel.weight.data = g.float()
gaussian_kernel


def prediction(model):
    model.eval()
    dataset = Mscoco_minival()
    minival_loader = torch.utils.data.DataLoader(
        dataset, batch_size=1, shuffle=False, num_workers=20, pin_memory=True)
    minival_loader_desc = tqdm(minival_loader)

    final_result = []

    tmp_inp = {}
    for i, (inp, box, im_name, metaData) in enumerate(minival_loader_desc):
        #inp = torch.autograd.Variable(inp, volatile=True)
        pt1, pt2, ori_inp = metaData
        #with torch.autograd.profiler.profile(use_cuda=True) as prof:
        if im_name[0] in tmp_inp.keys():
            inps = tmp_inp[im_name[0]]['inps']
            ori_inps = tmp_inp[im_name[0]]['ori_inps']
            boxes = tmp_inp[im_name[0]]['boxes']
            pt1s = tmp_inp[im_name[0]]['pt1s']
            pt2s = tmp_inp[im_name[0]]['pt2s']
            tmp_inp[im_name[0]]['inps'] = torch.cat((inps, inp), dim=0)
            tmp_inp[im_name[0]]['pt1s'] = torch.cat((pt1s, pt1), dim=0)
            tmp_inp[im_name[0]]['pt2s'] = torch.cat((pt2s, pt2), dim=0)
            tmp_inp[im_name[0]]['ori_inps'] = torch.cat(
                (ori_inps, ori_inp), dim=0)
            tmp_inp[im_name[0]]['boxes'] = torch.cat((boxes, box), dim=0)
        else:
            tmp_inp[im_name[0]] = {
                'inps': inp,
                'ori_inps': ori_inp,
                'boxes': box,
                'pt1s': pt1,
                'pt2s': pt2
            }

    for im_name, item in tqdm(tmp_inp.items()):
        inp = item['inps']
        pt1 = item['pt1s']
        pt2 = item['pt2s']
        box = item['boxes']
        ori_inp = item['ori_inps']

        with torch.no_grad():
            try:
                kp_preds = model(inp)
                kp_preds = kp_preds.data[:, :17, :]
            except RuntimeError as e:
                '''
                Divide inputs into two batches
                '''
                assert str(e) == 'CUDA error: out of memory'
                bn = inp.shape[0]
                inp1 = inp[: bn // 2]
                inp2 = inp[bn // 2:]
                kp_preds1 = model(inp1)
                kp_preds2 = model(inp2)
                kp_preds = torch.cat((kp_preds1, kp_preds2), dim=0)
                kp_preds = kp_preds.data[:, :17, :]

            # kp_preds = gaussian_kernel(F.relu(kp_preds))

            # Get predictions
            # location prediction (n, kp, 2) | score prediction (n, kp, 1)

            preds, preds_img, preds_scores = getPrediction(
                kp_preds.cpu().data, pt1, pt2,
                opt.inputResH, opt.inputResW, opt.outputResH, opt.outputResW
            )

            result = pose_nms(box, preds_img, preds_scores)
            result = {
                'imgname': im_name,
                'result': result
            }
        #img = display_frame(orig_img, result, opt.outputpath)
        #ori_inp = np.transpose(
        #    ori_inp[0][:3].clone().numpy(), (1, 2, 0)) * 255
        #img = vis_frame(ori_inp, result)
        #cv2.imwrite(os.path.join(
        #    './val', 'vis', im_name), img)
        final_result.append(result)

    write_json(final_result, './val', for_eval=True)
    return getmap()


if __name__ == '__main__':
    prediction()