File size: 6,868 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee3801
 
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee3801
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
2ee3801
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import ntpath
import os
import shutil

import numpy as np
import torch.utils.data
from tqdm import tqdm

from SPPE.src.main_fast_inference import *
from common.utils import calculate_area
from dataloader import DetectionLoader, DetectionProcessor, DataWriter, Mscoco, VideoLoader
from fn import getTime
from opt import opt
from pPose_nms import write_json

args = opt
args.dataset = 'coco'
args.fast_inference = False
args.save_img = True
args.sp = True
if not args.sp:
    torch.multiprocessing.set_start_method('forkserver', force=True)
    torch.multiprocessing.set_sharing_strategy('file_system')


def model_load():
    model = None
    return model


def image_interface(model, image):
    pass


def generate_kpts(video_file, progress):
    final_result, video_name = handle_video(video_file, progress)

    # ============ Changing ++++++++++

    kpts = []
    no_person = []
    for i in range(len(final_result)):
        if not final_result[i]['result']:  # No people
            no_person.append(i)
            kpts.append(None)
            continue

        kpt = max(final_result[i]['result'],
                  key=lambda x: x['proposal_score'].data[0] * calculate_area(x['keypoints']), )['keypoints']

        kpts.append(kpt.data.numpy())

        for n in no_person:
            kpts[n] = kpts[-1]
        no_person.clear()

    for n in no_person:
        kpts[n] = kpts[-1] if kpts[-1] else kpts[n-1]

    # ============ Changing End ++++++++++

    name = f'{args.outputpath}/{video_name}.npz'
    kpts = np.array(kpts).astype(np.float32)
    print('kpts npz save in ', name)
    np.savez_compressed(name, kpts=kpts)

    return kpts


def handle_video(video_file, progress):
    # =========== common ===============
    args.video = video_file
    base_name = os.path.basename(args.video)
    video_name = base_name[:base_name.rfind('.')]
    # =========== end common ===============
    # =========== image ===============
    # img_path = f'outputs/alpha_pose_{video_name}/split_image/'
    # args.inputpath = img_path
    # args.outputpath = f'outputs/alpha_pose_{video_name}'
    # if os.path.exists(args.outputpath):
    #     shutil.rmtree(f'{args.outputpath}/vis', ignore_errors=True)
    # else:
    #     os.mkdir(args.outputpath)
    #
    # # if not len(video_file):
    # #     raise IOError('Error: must contain --video')
    #
    # if len(img_path) and img_path != '/':
    #     for root, dirs, files in os.walk(img_path):
    #         im_names = sorted([f for f in files if 'png' in f or 'jpg' in f])
    # else:
    #     raise IOError('Error: must contain either --indir/--list')
    #
    # # Load input images
    # data_loader = ImageLoader(im_names, batchSize=args.detbatch, format='yolo').start()
    # print(f'Totally {data_loader.datalen} images')
    # =========== end image ===============
    # =========== video ===============
    args.outputpath = f'output_alphapose/{video_name}'
    if os.path.exists(args.outputpath):
        shutil.rmtree(f'{args.outputpath}/vis', ignore_errors=True)
    else:
        os.mkdir(args.outputpath)
    videofile = args.video
    mode = args.mode
    if not len(videofile):
        raise IOError('Error: must contain --video')
    # Load input video
    data_loader = VideoLoader(videofile, batchSize=args.detbatch).start()
    (fourcc, fps, frameSize) = data_loader.videoinfo()
    print('the video is {} f/s'.format(fps))
    # =========== end video ===============
    # Load detection loader
    print('Loading YOLO model..')
    sys.stdout.flush()
    det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start()
    #  start a thread to read frames from the file video stream
    det_processor = DetectionProcessor(det_loader).start()
    # Load pose model
    pose_dataset = Mscoco()
    if args.fast_inference:
        pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset)
    else:
        pose_model = InferenNet(4 * 1 + 1, pose_dataset)
    pose_model
    pose_model.eval()
    runtime_profile = {
        'dt': [],
        'pt': [],
        'pn': []
    }
    # Data writer
    save_path = os.path.join(args.outputpath, 'AlphaPose_' + ntpath.basename(video_file).split('.')[0] + '.avi')
    # writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start()
    writer = DataWriter(args.save_video).start()
    print('Start pose estimation...')
    im_names_desc = tqdm(range(data_loader.length()))
    batchSize = args.posebatch
    for i in progress.tqdm(range(data_loader.length()), desc="Step 1: 2D Detecting"):

        start_time = getTime()
        with torch.no_grad():
            (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read()
            if orig_img is None:
                print(f'{i}-th image read None: handle_video')
                break
            if boxes is None or boxes.nelement() == 0:
                writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1])
                continue

            ckpt_time, det_time = getTime(start_time)
            runtime_profile['dt'].append(det_time)
            # Pose Estimation

            datalen = inps.size(0)
            leftover = 0
            if datalen % batchSize:
                leftover = 1
            num_batches = datalen // batchSize + leftover
            hm = []
            for j in range(num_batches):
                inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)]
                hm_j = pose_model(inps_j)
                hm.append(hm_j)
            hm = torch.cat(hm)
            ckpt_time, pose_time = getTime(ckpt_time)
            runtime_profile['pt'].append(pose_time)

            hm = hm.cpu().data
            writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1])

            ckpt_time, post_time = getTime(ckpt_time)
            runtime_profile['pn'].append(post_time)

        if args.profile:
            # TQDM
            im_names_desc.set_description(
                'det time: {dt:.4f} | pose time: {pt:.4f} | post processing: {pn:.4f}'.format(
                    dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))
            )
    if (args.save_img or args.save_video) and not args.vis_fast:
        print('===========================> Rendering remaining images in the queue...')
        print('===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).')
    while writer.running():
        pass
    writer.stop()
    final_result = writer.results()
    write_json(final_result, args.outputpath)

    return final_result, video_name


if __name__ == "__main__":
    os.chdir('../..')
    print(os.getcwd())

    # handle_video(img_path='outputs/image/kobe')
    generate_kpts('outputs/dance.mp4')