File size: 4,643 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# import os
#
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
#
# import numpy as np
# from tqdm import tqdm
#
# from SPPE.src.main_fast_inference import *
# from dataloader import ImageLoader, DetectionLoader, DetectionProcessor, DataWriter, Mscoco
# from fn import getTime
# from opt import opt
# from pPose_nms import write_json
# from in_the_wild_data import split_frame
#
#
# def main(args):
#     inputpath = args.inputpath
#     inputlist = args.inputlist
#     mode = args.mode
#     if not os.path.exists(args.outputpath):
#         os.makedirs(args.outputpath, exist_ok=True)
#
#     if len(inputlist):
#         im_names = open(inputlist, 'r').readlines()
#     elif len(inputpath) and inputpath != '/':
#         for root, dirs, files in os.walk(inputpath):
#             im_names = [f for f in files if 'png' in f or 'jpg' in f]
#     else:
#         raise IOError('Error: must contain either --indir/--list')
#
#     # Load input images
#     data_loader = ImageLoader(im_names, batchSize=args.detbatch, format='yolo').start()
#
#     # Load detection loader
#     print('Loading YOLO model..')
#     sys.stdout.flush()
#     det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start()
#     det_processor = DetectionProcessor(det_loader).start()
#
#     # Load pose model
#     pose_dataset = Mscoco()
#     if args.fast_inference:
#         pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset)
#     else:
#         pose_model = InferenNet(4 * 1 + 1, pose_dataset)
#     pose_model
#     pose_model.eval()
#
#     runtime_profile = {
#         'dt': [],
#         'pt': [],
#         'pn': []
#     }
#
#     # Init data writer
#     writer = DataWriter(args.save_video).start()
#
#     data_len = data_loader.length()
#     im_names_desc = tqdm(range(data_len))
#
#     batchSize = args.posebatch
#     for i in im_names_desc:
#         start_time = getTime()
#         with torch.no_grad():
#             (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read()
#             if boxes is None or boxes.nelement() == 0:
#                 writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1])
#                 continue
#
#             ckpt_time, det_time = getTime(start_time)
#             runtime_profile['dt'].append(det_time)
#             # Pose Estimation
#
#             datalen = inps.size(0)
#             leftover = 0
#             if (datalen) % batchSize:
#                 leftover = 1
#             num_batches = datalen // batchSize + leftover
#             hm = []
#             for j in range(num_batches):
#                 inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)]
#                 hm_j = pose_model(inps_j)
#                 hm.append(hm_j)
#             hm = torch.cat(hm)
#             ckpt_time, pose_time = getTime(ckpt_time)
#             runtime_profile['pt'].append(pose_time)
#             hm = hm.cpu()
#             writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1])
#
#             ckpt_time, post_time = getTime(ckpt_time)
#             runtime_profile['pn'].append(post_time)
#
#         if args.profile:
#             # TQDM
#             im_names_desc.set_description(
#                 'det time: {dt:.3f} | pose time: {pt:.2f} | post processing: {pn:.4f}'.format(
#                     dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))
#             )
#
#     print('===========================> Finish Model Running.')
#     if (args.save_img or args.save_video) and not args.vis_fast:
#         print('===========================> Rendering remaining images in the queue...')
#         print('===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).')
#     while writer.running():
#         pass
#     writer.stop()
#     final_result = writer.results()
#     write_json(final_result, args.outputpath)
#
#
# if __name__ == "__main__":
#     args = opt
#     args.dataset = 'coco'
#     args.sp = True
#     if not args.sp:
#         torch.multiprocessing.set_start_method('forkserver', force=True)
#         torch.multiprocessing.set_sharing_strategy('file_system')
#
#     video_name = 'kobe'
#
#     args.inputpath = f'../in_the_wild_data/split_{video_name}'
#     if not os.listdir(args.inputpath):
#         split_frame.split(f'../in_the_wild_data/{video_name}.mp4')
#
#     args.outputpath = f'../in_the_wild_data/alphapose_{video_name}'
#     args.save_img = True
#
#     args.detbatch = 4
#
#     main(args)