File size: 3,974 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch.nn as nn
from .util_models import ConcatTable, CaddTable, Identity
import math
from opt import opt


class Residual(nn.Module):
    def __init__(self, numIn, numOut, inputResH, inputResW, stride=1,
                 net_type='preact', useConv=False, baseWidth=9, cardinality=4):
        super(Residual, self).__init__()

        self.con = ConcatTable([convBlock(numIn, numOut, inputResH,
                                          inputResW, net_type, baseWidth, cardinality, stride),
                                skipLayer(numIn, numOut, stride, useConv)])
        self.cadd = CaddTable(True)

    def forward(self, x):
        out = self.con(x)
        out = self.cadd(out)
        return out


def convBlock(numIn, numOut, inputResH, inputResW, net_type, baseWidth, cardinality, stride):
    numIn = int(numIn)
    numOut = int(numOut)

    addTable = ConcatTable()
    s_list = []
    if net_type != 'no_preact':
        s_list.append(nn.BatchNorm2d(numIn))
        s_list.append(nn.ReLU(True))

    conv1 = nn.Conv2d(numIn, numOut // 2, kernel_size=1)
    if opt.init:
        nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 2))
    s_list.append(conv1)

    s_list.append(nn.BatchNorm2d(numOut // 2))
    s_list.append(nn.ReLU(True))

    conv2 = nn.Conv2d(numOut // 2, numOut // 2,
                      kernel_size=3, stride=stride, padding=1)
    if opt.init:
        nn.init.xavier_normal(conv2.weight)
    s_list.append(conv2)

    s = nn.Sequential(*s_list)
    addTable.add(s)

    D = math.floor(numOut // baseWidth)
    C = cardinality
    s_list = []

    if net_type != 'no_preact':
        s_list.append(nn.BatchNorm2d(numIn))
        s_list.append(nn.ReLU(True))

    conv1 = nn.Conv2d(numIn, D, kernel_size=1, stride=stride)
    if opt.init:
        nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / C))

    s_list.append(conv1)
    s_list.append(nn.BatchNorm2d(D))
    s_list.append(nn.ReLU(True))
    s_list.append(pyramid(D, C, inputResH, inputResW))
    s_list.append(nn.BatchNorm2d(D))
    s_list.append(nn.ReLU(True))

    a = nn.Conv2d(D, numOut // 2, kernel_size=1)
    a.nBranchIn = C
    if opt.init:
        nn.init.xavier_normal(a.weight, gain=math.sqrt(1 / C))
    s_list.append(a)

    s = nn.Sequential(*s_list)
    addTable.add(s)

    elewiswAdd = nn.Sequential(
        addTable,
        CaddTable(False)
    )
    conv2 = nn.Conv2d(numOut // 2, numOut, kernel_size=1)
    if opt.init:
        nn.init.xavier_normal(conv2.weight, gain=math.sqrt(1 / 2))
    model = nn.Sequential(
        elewiswAdd,
        nn.BatchNorm2d(numOut // 2),
        nn.ReLU(True),
        conv2
    )
    return model


def pyramid(D, C, inputResH, inputResW):
    pyraTable = ConcatTable()
    sc = math.pow(2, 1 / C)
    for i in range(C):
        scaled = 1 / math.pow(sc, i + 1)
        conv1 = nn.Conv2d(D, D, kernel_size=3, stride=1, padding=1)
        if opt.init:
            nn.init.xavier_normal(conv1.weight)
        s = nn.Sequential(
            nn.FractionalMaxPool2d(2, output_ratio=(scaled, scaled)),
            conv1,
            nn.UpsamplingBilinear2d(size=(int(inputResH), int(inputResW))))
        pyraTable.add(s)
    pyra = nn.Sequential(
        pyraTable,
        CaddTable(False)
    )
    return pyra


class skipLayer(nn.Module):
    def __init__(self, numIn, numOut, stride, useConv):
        super(skipLayer, self).__init__()
        self.identity = False

        if numIn == numOut and stride == 1 and not useConv:
            self.identity = True
        else:
            conv1 = nn.Conv2d(numIn, numOut, kernel_size=1, stride=stride)
            if opt.init:
                nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 2))
            self.m = nn.Sequential(
                nn.BatchNorm2d(numIn),
                nn.ReLU(True),
                conv1
            )

    def forward(self, x):
        if self.identity:
            return x
        else:
            return self.m(x)