File size: 5,909 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
 
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from __future__ import division
import time
import torch 
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2 
from .util import *
from .darknet import Darknet
from .preprocess import prep_image, inp_to_image, letterbox_image
import pandas as pd
import random 
import pickle as pkl
import argparse


def get_test_input(input_dim, CUDA):
    img = cv2.imread("dog-cycle-car.png")
    img = cv2.resize(img, (input_dim, input_dim)) 
    img_ =  img[:,:,::-1].transpose((2,0,1))
    img_ = img_[np.newaxis,:,:,:]/255.0
    img_ = torch.from_numpy(img_).float()
    img_ = Variable(img_)
    
    if CUDA:
        img_ = img_
    
    return img_

def prep_image(img, inp_dim):
    """
    Prepare image for inputting to the neural network. 
    
    Returns a Variable 
    """

    orig_im = img
    dim = orig_im.shape[1], orig_im.shape[0]
    img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
    img_ = img[:,:,::-1].transpose((2,0,1)).copy()
    img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
    return img_, orig_im, dim

def write(x, img):
    c1 = tuple(x[1:3].int())
    c2 = tuple(x[3:5].int())
    cls = int(x[-1])
    label = "{0}".format(classes[cls])
    color = random.choice(colors)
    cv2.rectangle(img, c1, c2,color, 1)
    t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0]
    c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
    cv2.rectangle(img, c1, c2,color, -1)
    cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1);
    return img

def arg_parse():
    """
    Parse arguements to the detect module
    
    """
    
    
    parser = argparse.ArgumentParser(description='YOLO v2 Video Detection Module')
   
    parser.add_argument("--video", dest = 'video', help = 
                        "Video to run detection upon",
                        default = "video.avi", type = str)
    parser.add_argument("--dataset", dest = "dataset", help = "Dataset on which the network has been trained", default = "pascal")
    parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.5)
    parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4)
    parser.add_argument("--cfg", dest = 'cfgfile', help = 
                        "Config file",
                        default = "cfg/yolov3-spp.cfg", type = str)
    parser.add_argument("--weights", dest = 'weightsfile', help = 
                        "weightsfile",
                        default = "yolov3-spp.weights", type = str)
    parser.add_argument("--reso", dest = 'reso', help = 
                        "Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
                        default = "416", type = str)
    return parser.parse_args()


if __name__ == '__main__':
    args = arg_parse()
    confidence = float(args.confidence)
    nms_thesh = float(args.nms_thresh)
    start = 0

    CUDA = torch.cuda.is_available()

        

    CUDA = torch.cuda.is_available()
    num_classes = 80 
    bbox_attrs = 5 + num_classes
    
    print("Loading network.....")
    model = Darknet(args.cfgfile)
    model.load_weights(args.weightsfile)
    print("Network successfully loaded")
    
    model.net_info["height"] = args.reso
    inp_dim = int(model.net_info["height"])
    assert inp_dim % 32 == 0 
    assert inp_dim > 32

    
    if CUDA:
        model.half()
        
    model(get_test_input(inp_dim, CUDA), CUDA)

    model.eval()
    
    videofile = 'video.avi'
    
    cap = cv2.VideoCapture(videofile)
    
    assert cap.isOpened(), 'Cannot capture source'
    
    frames = 0
    start = time.time()    
    while cap.isOpened():
        
        ret, frame = cap.read()
        if ret:
            

            img, orig_im, dim = prep_image(frame, inp_dim)
            
            im_dim = torch.FloatTensor(dim).repeat(1,2)                        
            
            
            if CUDA:
                img = img.half()
                im_dim = im_dim.half()
                write_results = write_results_half
                predict_transform = predict_transform_half
            
            
            output = model(Variable(img, volatile = True), CUDA)
            output = write_results(output, confidence, num_classes, nms = True, nms_conf = nms_thesh)

           
            if type(output) == int:
                frames += 1
                print("FPS of the video is {:5.2f}".format( frames / (time.time() - start)))
                cv2.imshow("frame", orig_im)
                key = cv2.waitKey(1)
                if key & 0xFF == ord('q'):
                    break
                continue

        
            im_dim = im_dim.repeat(output.size(0), 1)
            scaling_factor = torch.min(inp_dim/im_dim,1)[0].view(-1,1)
            
            output[:,[1,3]] -= (inp_dim - scaling_factor*im_dim[:,0].view(-1,1))/2
            output[:,[2,4]] -= (inp_dim - scaling_factor*im_dim[:,1].view(-1,1))/2
            
            output[:,1:5] /= scaling_factor
    
            for i in range(output.shape[0]):
                output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim[i,0])
                output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim[i,1])
            
            
            classes = load_classes('data/coco.names')
            colors = pkl.load(open("pallete", "rb"))
            
            list(map(lambda x: write(x, orig_im), output))
            
            
            cv2.imshow("frame", orig_im)
            key = cv2.waitKey(1)
            if key & 0xFF == ord('q'):
                break
            frames += 1
            print("FPS of the video is {:5.2f}".format( frames / (time.time() - start)))

            
        else:
            break