File size: 2,474 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import division

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import cv2
import matplotlib.pyplot as plt
try:
    from util import count_parameters as count
    from util import convert2cpu as cpu
except ImportError:
    from yolo.util import count_parameters as count
    from yolo.util import convert2cpu as cpu
from PIL import Image, ImageDraw


def letterbox_image(img, inp_dim):
    '''resize image with unchanged aspect ratio using padding'''
    img_w, img_h = img.shape[1], img.shape[0]
    w, h = inp_dim
    new_w = int(img_w * min(w / img_w, h / img_h))
    new_h = int(img_h * min(w / img_w, h / img_h))
    resized_image = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_CUBIC)

    canvas = np.full((inp_dim[1], inp_dim[0], 3), 128)

    canvas[(h - new_h) // 2:(h - new_h) // 2 + new_h, (w - new_w) // 2:(w - new_w) // 2 + new_w, :] = resized_image

    return canvas


def prep_image(img, inp_dim):
    """
    Prepare image for inputting to the neural network.

    Returns a Variable
    """

    orig_im = cv2.imread(img)
    shape = orig_im.shape
    dim = orig_im.shape[1], orig_im.shape[0]
    img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
    img_ = img[:, :, ::-1].transpose((2, 0, 1)).copy()
    img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
    return img_, orig_im, dim


def prep_frame(img, inp_dim):
    """
    Prepare image for inputting to the neural network.

    Returns a Variable
    """

    orig_im = img
    dim = orig_im.shape[1], orig_im.shape[0]
    img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
    img_ = img[:, :, ::-1].transpose((2, 0, 1)).copy()
    img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
    return img_, orig_im, dim


def prep_image_pil(img, network_dim):
    orig_im = Image.open(img)
    img = orig_im.convert('RGB')
    dim = img.size
    img = img.resize(network_dim)
    img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes()))
    img = img.view(*network_dim, 3).transpose(0, 1).transpose(0, 2).contiguous()
    img = img.view(1, 3, *network_dim)
    img = img.float().div(255.0)
    return (img, orig_im, dim)


def inp_to_image(inp):
    inp = inp.cpu().squeeze()
    inp = inp * 255
    try:
        inp = inp.data.numpy()
    except RuntimeError:
        inp = inp.numpy()
    inp = inp.transpose(1, 2, 0)

    inp = inp[:, :, ::-1]
    return inp