File size: 5,702 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os

import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch

from common.utils import evaluate

path = os.path.split(os.path.realpath(__file__))[0]
main_path = os.path.join(path, '..')


class common:
    keypoints_symmetry = [[1, 3, 5, 7, 9, 11, 13, 15], [2, 4, 6, 8, 10, 12, 14, 16]]
    rot = np.array([0.14070565, -0.15007018, -0.7552408, 0.62232804], dtype=np.float32)
    skeleton_parents = np.array([-1, 0, 1, 2, 0, 4, 5, 0, 7, 8, 9, 8, 11, 12, 8, 14, 15])
    pairs = [(1, 2), (5, 4), (6, 5), (8, 7), (8, 9), (10, 1), (11, 10), (12, 11), (13, 1), (14, 13), (15, 14), (16, 2), (16, 3), (16, 4), (16, 7)]

    kps_left, kps_right = list(keypoints_symmetry[0]), list(keypoints_symmetry[1])
    joints_left, joints_right = list([4, 5, 6, 11, 12, 13]), list([1, 2, 3, 14, 15, 16])
    pad = (243 - 1) // 2  # Padding on each side
    causal_shift = 0
    joint_pairs = [[0, 1], [1, 3], [0, 2], [2, 4],
                   [5, 6], [5, 7], [7, 9], [6, 8], [8, 10],
                   [5, 11], [6, 12], [11, 12],
                   [11, 13], [12, 14], [13, 15], [14, 16]]


def resize_img(frame, max_length=640):
    H, W = frame.shape[:2]
    if max(W, H) > max_length:
        if W > H:
            W_resize = max_length
            H_resize = int(H * max_length / W)
        else:
            H_resize = max_length
            W_resize = int(W * max_length / H)
        frame = cv2.resize(frame, (W_resize, H_resize), interpolation=cv2.INTER_AREA)
        return frame, W_resize, H_resize

    else:
        return frame, W, H


def rotate_bound(image, angle):
    (h, w) = image.shape[:2]
    (cX, cY) = (w // 2, h // 2)

    M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
    cos = np.abs(M[0, 0])
    sin = np.abs(M[0, 1])

    nW = int((h * sin) + (w * cos))
    nH = int((h * cos) + (w * sin))

    M[0, 2] += (nW / 2) - cX
    M[1, 2] += (nH / 2) - cY

    return cv2.warpAffine(image, M, (nW, nH))


def draw_2Dimg(img, kpt, display=None):
    # kpts : (17, 3)  3-->(x, y, score)
    im = img.copy()
    joint_pairs = common.joint_pairs
    for item in kpt:
        score = item[-1]
        if score > 0.1:
            x, y = int(item[0]), int(item[1])
            cv2.circle(im, (x, y), 1, (255, 5, 0), 5)
    for pair in joint_pairs:
        j, j_parent = pair
        pt1 = (int(kpt[j][0]), int(kpt[j][1]))
        pt2 = (int(kpt[j_parent][0]), int(kpt[j_parent][1]))
        cv2.line(im, pt1, pt2, (0, 255, 0), 2)

    if display:
        cv2.imshow('im', im)
        cv2.waitKey(3)
    return im


def draw_3Dimg(pos, image, display=None, kpt2D=None):
    from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
    fig = plt.figure(figsize=(12, 6))
    canvas = FigureCanvas(fig)

    # 2D
    fig.add_subplot(121)
    if kpt2D:
        plt.imshow(draw_2Dimg(image, kpt2D))
    else:
        plt.imshow(image)

    # 3D
    ax = fig.add_subplot(122, projection='3d')
    radius = 1.7
    ax.view_init(elev=15., azim=70.)
    ax.set_xlim3d([-radius / 2, radius / 2])
    ax.set_zlim3d([0, radius])
    ax.set_ylim3d([-radius / 2, radius / 2])
    ax.set_aspect('equal')
    # 坐标轴刻度
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.set_zticklabels([])
    ax.dist = 7.5
    parents = common.skeleton_parents
    joints_right = common.joints_right

    for j, j_parent in enumerate(parents):
        if j_parent == -1:
            continue

        col = 'red' if j in joints_right else 'black'
        # 画图3D
        ax.plot([pos[j, 0], pos[j_parent, 0]],
                [pos[j, 1], pos[j_parent, 1]],
                [pos[j, 2], pos[j_parent, 2]], zdir='z', c=col)
    width, height = fig.get_size_inches() * fig.get_dpi()
    canvas.draw()  # draw the canvas, cache the renderer
    image = np.fromstring(canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
    if display:
        cv2.imshow('im', image)
        cv2.waitKey(3)

    return image


def videoInfo(VideoName):
    cap = cv2.VideoCapture(VideoName)
    length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    return cap, length


def videopose_model_load():
    # load trained model
    from common.model import TemporalModel
    chk_filename = main_path + '/checkpoint/pretrained_h36m_detectron_coco.bin'
    checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)  # 把loc映射到storage
    model_pos = TemporalModel(17, 2, 17, filter_widths=[3, 3, 3, 3, 3], causal=False, dropout=False, channels=1024, dense=False)
    model_pos = model_pos.cuda()
    model_pos.load_state_dict(checkpoint['model_pos'])
    receptive_field = model_pos.receptive_field()
    return model_pos


def interface(model_pos, keypoints, W, H):
    # input (N, 17, 2) return (N, 17, 3)
    if not isinstance(keypoints, np.ndarray):
        keypoints = np.array(keypoints)

    from common.camera import camera_to_world, normalize_screen_coordinates
    #  keypoints = normalize_screen_coordinates_new(keypoints[..., :2], w=W, h=H)
    keypoints = normalize_screen_coordinates(keypoints[..., :2], w=1000, h=1002)
    input_keypoints = keypoints.copy()
    # test_time_augmentation True
    from common.generators import UnchunkedGenerator
    gen = UnchunkedGenerator(None, None, [input_keypoints], pad=common.pad, causal_shift=common.causal_shift, augment=True, kps_left=common.kps_left,
                             kps_right=common.kps_right, joints_left=common.joints_left, joints_right=common.joints_right)
    prediction = evaluate(gen, model_pos, return_predictions=True)
    prediction = camera_to_world(prediction, R=common.rot, t=0)
    prediction[:, :, 2] -= np.min(prediction[:, :, 2])
    return prediction