File size: 5,685 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import math
import os
import copy

def clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

class Encoder(nn.Module):
    def __init__(self, layer, N, length, d_model):
        super(Encoder, self).__init__()
        self.layers = layer
        self.norm = LayerNorm(d_model)

        self.pos_embedding_1 = nn.Parameter(torch.randn(1, length, d_model))
        self.pos_embedding_2 = nn.Parameter(torch.randn(1, length, d_model))
        self.pos_embedding_3 = nn.Parameter(torch.randn(1, length, d_model))

    def forward(self, x, mask):
        for i, layer in enumerate(self.layers):
            if i == 0:
                x += self.pos_embedding_1[:, :x.shape[1]]
            elif i == 1:
                x += self.pos_embedding_2[:, :x.shape[1]]
            elif i == 2:
                x += self.pos_embedding_3[:, :x.shape[1]]

            x = layer(x, mask, i)

        return x

class LayerNorm(nn.Module):
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

def attention(query, key, value, mask=None, dropout=None):
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim=-1)

    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn


class SublayerConnection(nn.Module):
    def __init__(self, size, dropout, stride_num, i):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)
        self.pooling = nn.MaxPool1d(1, stride_num[i])
        
    def forward(self, x, sublayer, i=-1, stride_num=-1):
        if i != -1:
            if stride_num[i] != 1:
                res = self.pooling(x.permute(0, 2, 1))
                res = res.permute(0, 2, 1)
                
                return res + self.dropout(sublayer(self.norm(x)))
            else:
                return x + self.dropout(sublayer(self.norm(x)))
        else:
            return x + self.dropout(sublayer(self.norm(x)))


class EncoderLayer(nn.Module):
    def __init__(self, size, self_attn, feed_forward, dropout, stride_num, i):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.stride_num = stride_num
        self.sublayer = clones(SublayerConnection(size, dropout, stride_num, i), 2)
        self.size = size

    def forward(self, x, mask, i):
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        x = self.sublayer[1](x, self.feed_forward, i, self.stride_num)
        return x


class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        self.d_k = d_model // h 
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        if mask is not None:
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)

        query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]

        x, self.attn = attention(query, key, value, mask=mask,
                                 dropout=self.dropout)

        x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)


class PositionwiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.1, number = -1, stride_num=-1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Conv1d(d_model, d_ff, kernel_size=1, stride=1)
        self.w_2 = nn.Conv1d(d_ff, d_model, kernel_size=3, stride=stride_num[number], padding = 1)

        self.gelu = nn.ReLU()

        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = x.permute(0, 2, 1)
        x = self.w_2(self.dropout(self.gelu(self.w_1(x))))
        x = x.permute(0, 2, 1)

        return x

class Transformer(nn.Module):   
    def __init__(self, n_layers=3, d_model=256, d_ff=512, h=8, length=27, stride_num=None, dropout=0.1):
        super(Transformer, self).__init__()

        self.length = length

        self.stride_num = stride_num
        self.model = self.make_model(N=n_layers, d_model=d_model, d_ff=d_ff, h=h, dropout=dropout, length = self.length)

    def forward(self, x, mask=None):
        x = self.model(x, mask)

        return x

    def make_model(self, N=3, d_model=256, d_ff=512, h=8, dropout=0.1, length=27):
        c = copy.deepcopy
        attn = MultiHeadedAttention(h, d_model)

        model_EncoderLayer = []
        for i in range(N):
            ff = PositionwiseFeedForward(d_model, d_ff, dropout, i, self.stride_num)
            model_EncoderLayer.append(EncoderLayer(d_model, c(attn), c(ff), dropout, self.stride_num, i))

        model_EncoderLayer = nn.ModuleList(model_EncoderLayer)

        model = Encoder(model_EncoderLayer, N, length, d_model)
        
        return model