File size: 9,456 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#

import time

import cv2
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.animation import FuncAnimation, writers
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from mpl_toolkits.mplot3d import Axes3D
from tqdm import tqdm

from common.utils import read_video


def ckpt_time(ckpt=None, display=0, desc=''):
    if not ckpt:
        return time.time()
    else:
        if display:
            print(desc + ' consume time {:0.4f}'.format(time.time() - float(ckpt)))
        return time.time() - float(ckpt), time.time()


def set_equal_aspect(ax, data):
    """
    Create white cubic bounding box to make sure that 3d axis is in equal aspect.
    :param ax: 3D axis
    :param data: shape of(frames, 3), generated from BVH using convert_bvh2dataset.py
    """
    X, Y, Z = data[..., 0], data[..., 1], data[..., 2]

    # Create cubic bounding box to simulate equal aspect ratio
    max_range = np.array([X.max() - X.min(), Y.max() - Y.min(), Z.max() - Z.min()]).max()
    Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten() + 0.5 * (X.max() + X.min())
    Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten() + 0.5 * (Y.max() + Y.min())
    Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten() + 0.5 * (Z.max() + Z.min())

    for xb, yb, zb in zip(Xb, Yb, Zb):
        ax.plot([xb], [yb], [zb], 'w')


def downsample_tensor(X, factor):
    length = X.shape[0] // factor * factor
    return np.mean(X[:length].reshape(-1, factor, *X.shape[1:]), axis=1)


def render_animation(keypoints, poses, skeleton, fps, bitrate, azim, output, viewport,
                     limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0):
    """
    TODO
    Render an animation. The supported output modes are:
     -- 'interactive': display an interactive figure
                       (also works on notebooks if associated with %matplotlib inline)
     -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...).
     -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg).
     -- 'filename.gif': render and export the animation a gif file (requires imagemagick).
    """
    plt.ioff()
    fig = plt.figure(figsize=(size * (1 + len(poses)), size))
    ax_in = fig.add_subplot(1, 1 + len(poses), 1)
    ax_in.get_xaxis().set_visible(False)
    ax_in.get_yaxis().set_visible(False)
    ax_in.set_axis_off()
    ax_in.set_title('Input')

    # prevent wired error
    _ = Axes3D.__class__.__name__

    ax_3d = []
    lines_3d = []
    trajectories = []
    radius = 1.7
    for index, (title, data) in enumerate(poses.items()):
        ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d')
        ax.view_init(elev=15., azim=azim)
        ax.set_xlim3d([-radius / 2, radius / 2])
        ax.set_zlim3d([0, radius])
        ax.set_ylim3d([-radius / 2, radius / 2])
        # ax.set_aspect('equal')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_zticklabels([])
        ax.dist = 12.5
        ax.set_title(title)  # , pad=35
        ax_3d.append(ax)
        lines_3d.append([])
        trajectories.append(data[:, 0, [0, 1]])
    poses = list(poses.values())

    # Decode video
    if input_video_path is None:
        # Black background
        all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8')
    else:
        # Load video using ffmpeg
        all_frames = []
        for f in read_video(input_video_path, fps=None, skip=input_video_skip):
            all_frames.append(f)

        effective_length = min(keypoints.shape[0], len(all_frames))
        all_frames = all_frames[:effective_length]

    if downsample > 1:
        keypoints = downsample_tensor(keypoints, downsample)
        all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8')
        for idx in range(len(poses)):
            poses[idx] = downsample_tensor(poses[idx], downsample)
            trajectories[idx] = downsample_tensor(trajectories[idx], downsample)
        fps /= downsample

    initialized = False
    image = None
    lines = []
    points = None

    if limit < 1:
        limit = len(all_frames)
    else:
        limit = min(limit, len(all_frames))

    parents = skeleton.parents()
    pbar = tqdm(total=limit)

    def update_video(i):
        nonlocal initialized, image, lines, points

        for n, ax in enumerate(ax_3d):
            ax.set_xlim3d([-radius / 2 + trajectories[n][i, 0], radius / 2 + trajectories[n][i, 0]])
            ax.set_ylim3d([-radius / 2 + trajectories[n][i, 1], radius / 2 + trajectories[n][i, 1]])

        # Update 2D poses
        if not initialized:
            image = ax_in.imshow(all_frames[i], aspect='equal')

            for j, j_parent in enumerate(parents):
                if j_parent == -1:
                    continue

                # if len(parents) == keypoints.shape[1] and 1 == 2:
                #     # Draw skeleton only if keypoints match (otherwise we don't have the parents definition)
                #     lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]],
                #                             [keypoints[i, j, 1], keypoints[i, j_parent, 1]], color='pink'))

                col = 'red' if j in skeleton.joints_right() else 'black'
                for n, ax in enumerate(ax_3d):
                    pos = poses[n][i]
                    lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]],
                                               [pos[j, 1], pos[j_parent, 1]],
                                               [pos[j, 2], pos[j_parent, 2]], zdir='z', c=col))

            points = ax_in.scatter(*keypoints[i].T, 5, color='red', edgecolors='white', zorder=10)

            initialized = True
        else:
            image.set_data(all_frames[i])

            for j, j_parent in enumerate(parents):
                if j_parent == -1:
                    continue

                # if len(parents) == keypoints.shape[1] and 1 == 2:
                #     lines[j - 1][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]],
                #                              [keypoints[i, j, 1], keypoints[i, j_parent, 1]])

                for n, ax in enumerate(ax_3d):
                    pos = poses[n][i]
                    lines_3d[n][j - 1][0].set_xdata(np.array([pos[j, 0], pos[j_parent, 0]])) # Hotfix matplotlib's bug. https://github.com/matplotlib/matplotlib/pull/20555
                    lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]])
                    lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z')

            points.set_offsets(keypoints[i])

        pbar.update()

    fig.tight_layout()

    anim = FuncAnimation(fig, update_video, frames=limit, interval=1000.0 / fps, repeat=False)
    if output.endswith('.mp4'):
        Writer = writers['ffmpeg']
        writer = Writer(fps=fps, metadata={}, bitrate=bitrate)
        anim.save(output, writer=writer)
    elif output.endswith('.gif'):
        anim.save(output, dpi=60, writer='imagemagick')
    else:
        raise ValueError('Unsupported output format (only .mp4 and .gif are supported)')
    pbar.close()
    plt.close()


def render_animation_test(keypoints, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1, downsample=1, size=6, input_video_frame=None,
                          input_video_skip=0, num=None):
    t0 = ckpt_time()
    fig = plt.figure(figsize=(12, 6))
    canvas = FigureCanvas(fig)
    fig.add_subplot(121)
    plt.imshow(input_video_frame)
    # 3D
    ax = fig.add_subplot(122, projection='3d')
    ax.view_init(elev=15., azim=azim)
    # set 长度范围
    radius = 1.7
    ax.set_xlim3d([-radius / 2, radius / 2])
    ax.set_zlim3d([0, radius])
    ax.set_ylim3d([-radius / 2, radius / 2])
    ax.set_aspect('equal')
    # 坐标轴刻度
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.set_zticklabels([])
    ax.dist = 7.5

    # lxy add
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')

    # array([-1,  0,  1,  2,  0,  4,  5,  0,  7,  8,  9,  8, 11, 12,  8, 14, 15])
    parents = skeleton.parents()

    pos = poses['Reconstruction'][-1]
    _, t1 = ckpt_time(t0, desc='1 ')
    for j, j_parent in enumerate(parents):
        if j_parent == -1:
            continue

        if len(parents) == keypoints.shape[1]:
            color_pink = 'pink'
            if j == 1 or j == 2:
                color_pink = 'black'

        col = 'red' if j in skeleton.joints_right() else 'black'
        # 画图3D
        ax.plot([pos[j, 0], pos[j_parent, 0]],
                [pos[j, 1], pos[j_parent, 1]],
                [pos[j, 2], pos[j_parent, 2]], zdir='z', c=col)

    #  plt.savefig('test/3Dimage_{}.png'.format(1000+num))
    width, height = fig.get_size_inches() * fig.get_dpi()
    _, t2 = ckpt_time(t1, desc='2 ')
    canvas.draw()  # draw the canvas, cache the renderer
    image = np.fromstring(canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
    cv2.imshow('im', image)
    cv2.waitKey(5)
    _, t3 = ckpt_time(t2, desc='3 ')
    return image