Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
from engine import SegmentAnythingModel, StableDiffusionInpaintingPipeline
|
6 |
+
from utils import show_anns, create_image_grid
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import PIL
|
9 |
+
import requests
|
10 |
+
import matplotlib
|
11 |
+
matplotlib.use('Agg') # Use Agg backend
|
12 |
+
|
13 |
+
# Check for CUDA availability
|
14 |
+
if not torch.cuda.is_available():
|
15 |
+
# If CUDA isn't available, create a simple Gradio interface to notify users
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
gr.HTML("""
|
18 |
+
<style>
|
19 |
+
body {
|
20 |
+
position: relative;
|
21 |
+
height: 100vh;
|
22 |
+
width: 100%;
|
23 |
+
display: flex;
|
24 |
+
justify-content: center;
|
25 |
+
align-items: center;
|
26 |
+
background: rgba(0, 0, 0, 0.1);
|
27 |
+
filter: blur(10px);
|
28 |
+
}
|
29 |
+
.overlay {
|
30 |
+
position: absolute;
|
31 |
+
z-index: 10;
|
32 |
+
color: white;
|
33 |
+
font-size: 20px;
|
34 |
+
text-align: center;
|
35 |
+
padding: 20px;
|
36 |
+
background-color: rgba(0, 0, 0, 0.7);
|
37 |
+
border-radius: 10px;
|
38 |
+
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.5);
|
39 |
+
}
|
40 |
+
.message {
|
41 |
+
font-size: 22px;
|
42 |
+
margin-top: 20px;
|
43 |
+
}
|
44 |
+
</style>
|
45 |
+
<div class="overlay">
|
46 |
+
<h1>CUDA is not available</h1>
|
47 |
+
<p>Please clone the repository or run it in Colab:</p>
|
48 |
+
<a href="https://github.com/SanshruthR/Stable-Diffusion-Inpainting_with_SAM" style="color: #1e90ff; text-decoration: underline;">GitHub Repository</a>
|
49 |
+
<div class="message">
|
50 |
+
<p>We are currently unable to run on this machine because CUDA is missing.</p>
|
51 |
+
</div>
|
52 |
+
</div>
|
53 |
+
""")
|
54 |
+
demo.launch(share=True, debug=True)
|
55 |
+
exit() # Exit the program if CUDA is not available
|
56 |
+
|
57 |
+
# Download SAM checkpoint
|
58 |
+
url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
59 |
+
response = requests.get(url)
|
60 |
+
|
61 |
+
with open("sam_vit_h_4b8939.pth", "wb") as file:
|
62 |
+
file.write(response.content)
|
63 |
+
|
64 |
+
# Initialize models
|
65 |
+
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
66 |
+
model_type = "vit_h"
|
67 |
+
device = "cuda" # Default device
|
68 |
+
sam_model = SegmentAnythingModel(sam_checkpoint, model_type, device)
|
69 |
+
|
70 |
+
model_dir = "stabilityai/stable-diffusion-2-inpainting"
|
71 |
+
sd_pipeline = StableDiffusionInpaintingPipeline(model_dir)
|
72 |
+
|
73 |
+
# Global variable to store masks
|
74 |
+
current_masks = None
|
75 |
+
current_image = None
|
76 |
+
|
77 |
+
def segment_image(image):
|
78 |
+
global current_masks, current_image
|
79 |
+
current_image = image
|
80 |
+
|
81 |
+
# Convert to numpy array
|
82 |
+
image_array = np.array(image)
|
83 |
+
|
84 |
+
# Generate masks
|
85 |
+
current_masks = sam_model.generate_masks(image_array)
|
86 |
+
|
87 |
+
# Create visualization of masks
|
88 |
+
fig = plt.figure(figsize=(10, 10))
|
89 |
+
ax = fig.add_subplot(1, 1, 1)
|
90 |
+
|
91 |
+
# Display the original image first
|
92 |
+
ax.imshow(sam_model.preprocess_image(image))
|
93 |
+
|
94 |
+
# Overlay masks
|
95 |
+
show_anns(current_masks, ax)
|
96 |
+
|
97 |
+
ax.axis('off')
|
98 |
+
plt.tight_layout()
|
99 |
+
|
100 |
+
return fig
|
101 |
+
|
102 |
+
def inpaint_image(mask_index, prompt1, prompt2, prompt3, prompt4):
|
103 |
+
global current_masks, current_image
|
104 |
+
|
105 |
+
if current_masks is None or current_image is None:
|
106 |
+
return None
|
107 |
+
|
108 |
+
# Get selected mask
|
109 |
+
segmentation_mask = current_masks[mask_index]['segmentation']
|
110 |
+
stable_diffusion_mask = PIL.Image.fromarray((segmentation_mask * 255).astype(np.uint8))
|
111 |
+
|
112 |
+
# Generate inpainted images
|
113 |
+
prompts = [p for p in [prompt1, prompt2, prompt3, prompt4] if p.strip()]
|
114 |
+
generator = torch.Generator(device="cuda").manual_seed(42) # Fixed seed for consistency
|
115 |
+
|
116 |
+
encoded_images = []
|
117 |
+
for prompt in prompts:
|
118 |
+
img = sd_pipeline.inpaint(
|
119 |
+
prompt=prompt,
|
120 |
+
image=Image.fromarray(np.array(current_image)),
|
121 |
+
mask_image=stable_diffusion_mask,
|
122 |
+
guidance_scale=7.5, # Lower guidance scale for more creative results
|
123 |
+
num_inference_steps=50, # Good balance between quality and speed
|
124 |
+
generator=generator
|
125 |
+
)
|
126 |
+
encoded_images.append(img)
|
127 |
+
|
128 |
+
# Create result grid
|
129 |
+
result_grid = create_image_grid(Image.fromarray(np.array(current_image)),
|
130 |
+
encoded_images,
|
131 |
+
prompts,
|
132 |
+
2, 3)
|
133 |
+
|
134 |
+
return result_grid
|
135 |
+
|
136 |
+
# Create Gradio interface with two tabs
|
137 |
+
with gr.Blocks() as demo:
|
138 |
+
gr.Markdown("# Segment Anything + Stable Diffusion Inpainting")
|
139 |
+
|
140 |
+
with gr.Tab("Step 1: Segment Image"):
|
141 |
+
with gr.Row():
|
142 |
+
input_image = gr.Image(label="Input Image")
|
143 |
+
mask_output = gr.Plot(label="Available Masks")
|
144 |
+
segment_btn = gr.Button("Generate Masks")
|
145 |
+
segment_btn.click(fn=segment_image, inputs=[input_image], outputs=[mask_output])
|
146 |
+
|
147 |
+
with gr.Tab("Step 2: Inpaint"):
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Column():
|
150 |
+
mask_index = gr.Slider(minimum=0, maximum=20, step=1,
|
151 |
+
label="Mask Index (select based on mask numbers from Step 1)")
|
152 |
+
prompt1 = gr.Textbox(label="Prompt 1", placeholder="Enter first inpainting prompt")
|
153 |
+
prompt2 = gr.Textbox(label="Prompt 2", placeholder="Enter second inpainting prompt")
|
154 |
+
prompt3 = gr.Textbox(label="Prompt 3", placeholder="Enter third inpainting prompt")
|
155 |
+
prompt4 = gr.Textbox(label="Prompt 4", placeholder="Enter fourth inpainting prompt")
|
156 |
+
inpaint_output = gr.Plot(label="Inpainting Results")
|
157 |
+
inpaint_btn = gr.Button("Generate Inpainting")
|
158 |
+
inpaint_btn.click(fn=inpaint_image,
|
159 |
+
inputs=[mask_index, prompt1, prompt2, prompt3, prompt4],
|
160 |
+
outputs=[inpaint_output])
|
161 |
+
|
162 |
+
if __name__ == "__main__":
|
163 |
+
demo.launch(share=True, debug=True)
|