Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,31 @@
|
|
1 |
-
# Maximize CPU usage
|
2 |
-
import multiprocessing
|
3 |
-
import cv2
|
4 |
-
|
5 |
-
# Get the number of CPU cores
|
6 |
-
cpu_cores = multiprocessing.cpu_count()
|
7 |
-
|
8 |
-
# Set OpenCV to use all available cores
|
9 |
-
cv2.setNumThreads(cpu_cores)
|
10 |
-
|
11 |
-
# Print the number of threads being used (optional)
|
12 |
-
print(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores")
|
13 |
-
|
14 |
-
##############
|
15 |
import cv2
|
16 |
import gradio as gr
|
17 |
import numpy as np
|
18 |
from PIL import Image, ImageDraw
|
19 |
from ultralytics import YOLO
|
20 |
-
from ultralytics.utils.plotting import Annotator, colors
|
21 |
import logging
|
22 |
-
import
|
|
|
|
|
23 |
|
24 |
# Set up logging
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
-
# Global variables
|
29 |
start_point = None
|
30 |
end_point = None
|
31 |
-
line_params = None # Stores (slope, intercept
|
32 |
|
33 |
# Low-resolution for inference
|
34 |
LOW_RES = (320, 180)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def extract_first_frame(stream_url):
|
37 |
"""
|
38 |
Extracts the first available frame from the IP camera stream and returns it as a PIL image.
|
@@ -63,46 +56,27 @@ def update_line(image, evt: gr.SelectData):
|
|
63 |
"""
|
64 |
global start_point, end_point, line_params
|
65 |
|
66 |
-
# If it's the first click, set the start point and show it on the image
|
67 |
if start_point is None:
|
68 |
start_point = (evt.index[0], evt.index[1])
|
69 |
-
|
70 |
-
# Draw the start point on the image
|
71 |
draw = ImageDraw.Draw(image)
|
72 |
-
draw.ellipse(
|
73 |
-
(start_point[0] - 5, start_point[1] - 5, start_point[0] + 5, start_point[1] + 5),
|
74 |
-
fill="blue", outline="blue"
|
75 |
-
)
|
76 |
-
|
77 |
return image, f"Line Coordinates:\nStart: {start_point}, End: None"
|
78 |
|
79 |
-
# If it's the second click, set the end point and draw the line
|
80 |
end_point = (evt.index[0], evt.index[1])
|
81 |
-
|
82 |
-
# Calculate the slope (m) and intercept (b) of the line: y = mx + b
|
83 |
if start_point[0] != end_point[0]: # Avoid division by zero
|
84 |
slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0])
|
85 |
intercept = start_point[1] - slope * start_point[0]
|
86 |
-
line_params = (slope, intercept, start_point, end_point)
|
87 |
else:
|
88 |
-
# Vertical line (special case)
|
89 |
line_params = (float('inf'), start_point[0], start_point, end_point)
|
90 |
|
91 |
-
# Draw the line and end point on the image
|
92 |
draw = ImageDraw.Draw(image)
|
93 |
draw.line([start_point, end_point], fill="red", width=2)
|
94 |
-
draw.ellipse(
|
95 |
-
(end_point[0] - 5, end_point[1] - 5, end_point[0] + 5, end_point[1] + 5),
|
96 |
-
fill="green", outline="green"
|
97 |
-
)
|
98 |
|
99 |
-
# Return the updated image and line info
|
100 |
line_info = f"Line Coordinates:\nStart: {start_point}, End: {end_point}\nLine Equation: y = {line_params[0]:.2f}x + {line_params[1]:.2f}"
|
101 |
-
|
102 |
-
# Reset the points for the next interaction
|
103 |
start_point = None
|
104 |
end_point = None
|
105 |
-
|
106 |
return image, line_info
|
107 |
|
108 |
def reset_line():
|
@@ -115,182 +89,96 @@ def reset_line():
|
|
115 |
line_params = None
|
116 |
return None, "Line reset. Click to draw a new line."
|
117 |
|
118 |
-
def intersect(A, B, C, D):
|
119 |
-
"""
|
120 |
-
Determines if two line segments AB and CD intersect.
|
121 |
-
"""
|
122 |
-
def ccw(A, B, C):
|
123 |
-
return (C[1] - A[1]) * (B[0] - A[0]) - (B[1] - A[1]) * (C[0] - A[0])
|
124 |
-
|
125 |
-
def on_segment(A, B, C):
|
126 |
-
if min(A[0], B[0]) <= C[0] <= max(A[0], B[0]) and min(A[1], B[1]) <= C[1] <= max(A[1], B[1]):
|
127 |
-
return True
|
128 |
-
return False
|
129 |
-
|
130 |
-
# Check if the line segments intersect
|
131 |
-
ccw1 = ccw(A, B, C)
|
132 |
-
ccw2 = ccw(A, B, D)
|
133 |
-
ccw3 = ccw(C, D, A)
|
134 |
-
ccw4 = ccw(C, D, B)
|
135 |
-
|
136 |
-
if ((ccw1 * ccw2 < 0) and (ccw3 * ccw4 < 0)):
|
137 |
-
return True
|
138 |
-
elif ccw1 == 0 and on_segment(A, B, C):
|
139 |
-
return True
|
140 |
-
elif ccw2 == 0 and on_segment(A, B, D):
|
141 |
-
return True
|
142 |
-
elif ccw3 == 0 and on_segment(C, D, A):
|
143 |
-
return True
|
144 |
-
elif ccw4 == 0 and on_segment(C, D, B):
|
145 |
-
return True
|
146 |
-
else:
|
147 |
-
return False
|
148 |
-
|
149 |
def is_object_crossing_line(box, line_params):
|
150 |
"""
|
151 |
Determines if an object's bounding box is fully intersected by the user-drawn line.
|
152 |
"""
|
153 |
_, _, line_start, line_end = line_params
|
154 |
-
|
155 |
-
# Get the bounding box coordinates
|
156 |
x1, y1, x2, y2 = box
|
157 |
-
|
158 |
-
# Define the four edges of the bounding box
|
159 |
-
box_edges = [
|
160 |
-
((x1, y1), (x2, y1)), # Top edge
|
161 |
-
((x2, y1), (x2, y2)), # Right edge
|
162 |
-
((x2, y2), (x1, y2)), # Bottom edge
|
163 |
-
((x1, y2), (x1, y1)) # Left edge
|
164 |
-
]
|
165 |
-
|
166 |
-
# Count the number of intersections between the line and the bounding box edges
|
167 |
intersection_count = 0
|
168 |
for edge_start, edge_end in box_edges:
|
169 |
if intersect(line_start, line_end, edge_start, edge_end):
|
170 |
intersection_count += 1
|
171 |
-
|
172 |
-
# Only count the object if the line intersects the bounding box at least twice
|
173 |
return intersection_count >= 2
|
174 |
|
175 |
-
def
|
176 |
-
"""
|
177 |
-
Draws the user-defined line on the frame.
|
178 |
-
"""
|
179 |
-
_, _, start_point, end_point = line_params
|
180 |
-
cv2.line(image, start_point, end_point, color, thickness)
|
181 |
-
|
182 |
-
def detect_and_draw(frame):
|
183 |
-
"""
|
184 |
-
Processes the frame in low resolution and scales the results back to high resolution.
|
185 |
-
"""
|
186 |
-
# Create low-res copy
|
187 |
-
low_res_frame = cv2.resize(frame, LOW_RES)
|
188 |
-
|
189 |
-
# Perform detection on the low-res frame
|
190 |
-
results = model(low_res_frame, verbose=False)
|
191 |
-
|
192 |
-
# Calculate scaling factors for bounding boxes
|
193 |
-
scale_x = frame.shape[1] / LOW_RES[0]
|
194 |
-
scale_y = frame.shape[0] / LOW_RES[1]
|
195 |
-
|
196 |
-
# Draw bounding boxes on the high-res frame
|
197 |
-
for detection in results[0].boxes.data:
|
198 |
-
x1, y1, x2, y2, conf, cls = detection
|
199 |
-
# Scale bounding box coordinates to high-res
|
200 |
-
x1, y1, x2, y2 = int(x1 * scale_x), int(y1 * scale_y), int(x2 * scale_x), int(y2 * scale_y)
|
201 |
-
label = f"{results[0].names[int(cls)]} {conf:.2f}"
|
202 |
-
# Draw the bounding box and label on the high-res frame
|
203 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
204 |
-
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
205 |
-
|
206 |
-
return frame
|
207 |
-
|
208 |
-
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
209 |
"""
|
210 |
-
|
211 |
"""
|
212 |
-
|
213 |
-
|
214 |
-
errors = []
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
if selected_classes is None or len(selected_classes) == 0:
|
219 |
-
errors.append("Error: No classes selected. Please select at least one class to detect.")
|
220 |
-
if stream_url is None or stream_url.strip() == "":
|
221 |
-
errors.append("Error: No stream URL provided.")
|
222 |
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
227 |
cap = cv2.VideoCapture(stream_url)
|
228 |
-
if not cap.isOpened():
|
229 |
-
errors.append("Error: Could not open stream.")
|
230 |
-
return None, "\n".join(errors)
|
231 |
-
|
232 |
model = YOLO(model="yolo11n.pt")
|
233 |
crossed_objects = {}
|
234 |
-
max_tracked_objects = 1000 # Maximum number of objects to track before clearing
|
235 |
|
236 |
-
|
237 |
-
while cap.isOpened():
|
238 |
ret, frame = cap.read()
|
239 |
if not ret:
|
240 |
-
errors.append("Error: Could not read frame from the stream.")
|
241 |
break
|
242 |
|
243 |
-
# Perform
|
244 |
-
|
245 |
-
|
246 |
-
if results[0].boxes.id is not None:
|
247 |
-
track_ids = results[0].boxes.id.int().cpu().tolist()
|
248 |
-
clss = results[0].boxes.cls.cpu().tolist()
|
249 |
-
boxes = results[0].boxes.xyxy.cpu()
|
250 |
-
confs = results[0].boxes.conf.cpu().tolist()
|
251 |
-
|
252 |
-
for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
|
253 |
-
if conf >= confidence_threshold and model.names[cls] in selected_classes:
|
254 |
-
# Check if the object crosses the line
|
255 |
-
if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
|
256 |
-
crossed_objects[t_id] = True
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
#
|
263 |
-
annotated_frame =
|
|
|
|
|
264 |
|
265 |
-
#
|
266 |
-
|
|
|
267 |
|
268 |
-
|
269 |
-
count = len(crossed_objects)
|
270 |
-
(text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
|
271 |
-
|
272 |
-
# Calculate the position for the middle of the top
|
273 |
-
margin = 10 # Margin from the top
|
274 |
-
x = (annotated_frame.shape[1] - text_width) // 2 # Center-align the text horizontally
|
275 |
-
y = text_height + margin # Top-align the text
|
276 |
-
|
277 |
-
# Draw the black background rectangle
|
278 |
-
cv2.rectangle(annotated_frame, (x - margin, y - text_height - margin), (x + text_width + margin, y + margin), (0, 0, 0), -1)
|
279 |
-
|
280 |
-
# Draw the text
|
281 |
-
cv2.putText(annotated_frame, f"COUNT: {count}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
282 |
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
285 |
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
# Define the Gradio interface
|
290 |
with gr.Blocks() as demo:
|
291 |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|
292 |
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
|
293 |
-
|
294 |
# Step 1: Enter the IP Camera Stream URL
|
295 |
stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8", visible=False)
|
296 |
|
@@ -300,33 +188,33 @@ with gr.Blocks() as demo:
|
|
300 |
if first_frame is None:
|
301 |
gr.Markdown(f"**Error:** {status}")
|
302 |
else:
|
303 |
-
# Image component for displaying the first frame
|
304 |
image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil")
|
305 |
-
|
306 |
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
|
307 |
image.select(update_line, inputs=image, outputs=[image, line_info])
|
308 |
|
309 |
# Step 2: Select classes to detect
|
310 |
gr.Markdown("### Step 2: Select Classes to Detect")
|
311 |
-
model = YOLO(model="yolo11n.pt")
|
312 |
-
class_names = list(model.names.values())
|
313 |
selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect")
|
314 |
|
315 |
-
# Step 3: Adjust confidence threshold
|
316 |
gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)")
|
317 |
confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold")
|
318 |
|
319 |
# Process the stream
|
320 |
process_button = gr.Button("Process Stream")
|
321 |
-
|
322 |
-
# Output image for real-time frame rendering
|
323 |
output_image = gr.Image(label="Processed Frame", streaming=True)
|
324 |
-
|
325 |
-
# Error box to display warnings/errors
|
326 |
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
|
327 |
|
328 |
# Event listener for processing the video
|
329 |
-
process_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
# Launch the interface
|
332 |
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
from PIL import Image, ImageDraw
|
5 |
from ultralytics import YOLO
|
|
|
6 |
import logging
|
7 |
+
import threading
|
8 |
+
import queue
|
9 |
+
import time
|
10 |
|
11 |
# Set up logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
+
# Global variables for line coordinates and line equation
|
16 |
start_point = None
|
17 |
end_point = None
|
18 |
+
line_params = None # Stores (slope, intercept, start_point, end_point)
|
19 |
|
20 |
# Low-resolution for inference
|
21 |
LOW_RES = (320, 180)
|
22 |
|
23 |
+
# Frame queue for processed frames
|
24 |
+
frame_queue = queue.Queue(maxsize=30) # Adjust queue size based on memory constraints
|
25 |
+
|
26 |
+
# Thread control flag
|
27 |
+
processing_active = True
|
28 |
+
|
29 |
def extract_first_frame(stream_url):
|
30 |
"""
|
31 |
Extracts the first available frame from the IP camera stream and returns it as a PIL image.
|
|
|
56 |
"""
|
57 |
global start_point, end_point, line_params
|
58 |
|
|
|
59 |
if start_point is None:
|
60 |
start_point = (evt.index[0], evt.index[1])
|
|
|
|
|
61 |
draw = ImageDraw.Draw(image)
|
62 |
+
draw.ellipse((start_point[0] - 5, start_point[1] - 5, start_point[0] + 5, start_point[1] + 5), fill="blue", outline="blue")
|
|
|
|
|
|
|
|
|
63 |
return image, f"Line Coordinates:\nStart: {start_point}, End: None"
|
64 |
|
|
|
65 |
end_point = (evt.index[0], evt.index[1])
|
|
|
|
|
66 |
if start_point[0] != end_point[0]: # Avoid division by zero
|
67 |
slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0])
|
68 |
intercept = start_point[1] - slope * start_point[0]
|
69 |
+
line_params = (slope, intercept, start_point, end_point)
|
70 |
else:
|
|
|
71 |
line_params = (float('inf'), start_point[0], start_point, end_point)
|
72 |
|
|
|
73 |
draw = ImageDraw.Draw(image)
|
74 |
draw.line([start_point, end_point], fill="red", width=2)
|
75 |
+
draw.ellipse((end_point[0] - 5, end_point[1] - 5, end_point[0] + 5, end_point[1] + 5), fill="green", outline="green")
|
|
|
|
|
|
|
76 |
|
|
|
77 |
line_info = f"Line Coordinates:\nStart: {start_point}, End: {end_point}\nLine Equation: y = {line_params[0]:.2f}x + {line_params[1]:.2f}"
|
|
|
|
|
78 |
start_point = None
|
79 |
end_point = None
|
|
|
80 |
return image, line_info
|
81 |
|
82 |
def reset_line():
|
|
|
89 |
line_params = None
|
90 |
return None, "Line reset. Click to draw a new line."
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def is_object_crossing_line(box, line_params):
|
93 |
"""
|
94 |
Determines if an object's bounding box is fully intersected by the user-drawn line.
|
95 |
"""
|
96 |
_, _, line_start, line_end = line_params
|
|
|
|
|
97 |
x1, y1, x2, y2 = box
|
98 |
+
box_edges = [((x1, y1), (x2, y1)), ((x2, y1), (x2, y2)), ((x2, y2), (x1, y2)), ((x1, y2), (x1, y1))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
intersection_count = 0
|
100 |
for edge_start, edge_end in box_edges:
|
101 |
if intersect(line_start, line_end, edge_start, edge_end):
|
102 |
intersection_count += 1
|
|
|
|
|
103 |
return intersection_count >= 2
|
104 |
|
105 |
+
def intersect(A, B, C, D):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
"""
|
107 |
+
Determines if two line segments AB and CD intersect.
|
108 |
"""
|
109 |
+
def ccw(A, B, C):
|
110 |
+
return (C[1] - A[1]) * (B[0] - A[0]) - (B[1] - A[1]) * (C[0] - A[0])
|
|
|
111 |
|
112 |
+
def on_segment(A, B, C):
|
113 |
+
return min(A[0], B[0]) <= C[0] <= max(A[0], B[0]) and min(A[1], B[1]) <= C[1] <= max(A[1], B[1])
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
ccw1 = ccw(A, B, C)
|
116 |
+
ccw2 = ccw(A, B, D)
|
117 |
+
ccw3 = ccw(C, D, A)
|
118 |
+
ccw4 = ccw(C, D, B)
|
119 |
+
return ((ccw1 * ccw2 < 0) and (ccw3 * ccw4 < 0)) or (ccw1 == 0 and on_segment(A, B, C)) or (ccw2 == 0 and on_segment(A, B, D)) or (ccw3 == 0 and on_segment(C, D, A)) or (ccw4 == 0 and on_segment(C, D, B))
|
120 |
|
121 |
+
def process_frames(stream_url, confidence_threshold, selected_classes):
|
122 |
+
"""
|
123 |
+
Processes frames in a separate thread and adds them to the frame queue.
|
124 |
+
"""
|
125 |
+
global processing_active, frame_queue
|
126 |
cap = cv2.VideoCapture(stream_url)
|
|
|
|
|
|
|
|
|
127 |
model = YOLO(model="yolo11n.pt")
|
128 |
crossed_objects = {}
|
|
|
129 |
|
130 |
+
while processing_active and cap.isOpened():
|
|
|
131 |
ret, frame = cap.read()
|
132 |
if not ret:
|
|
|
133 |
break
|
134 |
|
135 |
+
# Perform detection on low-res frame
|
136 |
+
low_res_frame = cv2.resize(frame, LOW_RES)
|
137 |
+
results = model.track(low_res_frame, persist=True, conf=confidence_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
# Scale bounding boxes to high-res
|
140 |
+
scale_x = frame.shape[1] / LOW_RES[0]
|
141 |
+
scale_y = frame.shape[0] / LOW_RES[1]
|
142 |
+
for detection in results[0].boxes.data:
|
143 |
+
x1, y1, x2, y2, conf, cls = detection
|
144 |
+
x1, y1, x2, y2 = int(x1 * scale_x), int(y1 * scale_y), int(x2 * scale_x), int(y2 * scale_y)
|
145 |
+
if is_object_crossing_line((x1, y1, x2, y2), line_params):
|
146 |
+
crossed_objects[results[0].boxes.id.int().cpu().tolist()[0]] = True
|
147 |
|
148 |
+
# Draw bounding boxes and line on the frame
|
149 |
+
annotated_frame = results[0].plot()
|
150 |
+
if line_params:
|
151 |
+
draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
|
152 |
|
153 |
+
# Add frame to the queue
|
154 |
+
if not frame_queue.full():
|
155 |
+
frame_queue.put(annotated_frame)
|
156 |
|
157 |
+
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
|
160 |
+
"""
|
161 |
+
Draws the user-defined line on the frame.
|
162 |
+
"""
|
163 |
+
_, _, start_point, end_point = line_params
|
164 |
+
cv2.line(image, start_point, end_point, color, thickness)
|
165 |
|
166 |
+
def display_frames():
|
167 |
+
"""
|
168 |
+
Displays frames from the queue at a consistent frame rate.
|
169 |
+
"""
|
170 |
+
while processing_active:
|
171 |
+
if not frame_queue.empty():
|
172 |
+
frame = frame_queue.get()
|
173 |
+
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), ""
|
174 |
+
else:
|
175 |
+
time.sleep(0.03) # Wait for the next frame
|
176 |
|
177 |
# Define the Gradio interface
|
178 |
with gr.Blocks() as demo:
|
179 |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|
180 |
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
|
181 |
+
|
182 |
# Step 1: Enter the IP Camera Stream URL
|
183 |
stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8", visible=False)
|
184 |
|
|
|
188 |
if first_frame is None:
|
189 |
gr.Markdown(f"**Error:** {status}")
|
190 |
else:
|
|
|
191 |
image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil")
|
|
|
192 |
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
|
193 |
image.select(update_line, inputs=image, outputs=[image, line_info])
|
194 |
|
195 |
# Step 2: Select classes to detect
|
196 |
gr.Markdown("### Step 2: Select Classes to Detect")
|
197 |
+
model = YOLO(model="yolo11n.pt")
|
198 |
+
class_names = list(model.names.values())
|
199 |
selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect")
|
200 |
|
201 |
+
# Step 3: Adjust confidence threshold
|
202 |
gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)")
|
203 |
confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold")
|
204 |
|
205 |
# Process the stream
|
206 |
process_button = gr.Button("Process Stream")
|
|
|
|
|
207 |
output_image = gr.Image(label="Processed Frame", streaming=True)
|
|
|
|
|
208 |
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
|
209 |
|
210 |
# Event listener for processing the video
|
211 |
+
process_button.click(
|
212 |
+
fn=lambda: (setattr(globals(), "processing_active", True), threading.Thread(target=process_frames, args=(stream_url.value, confidence_threshold.value, selected_classes.value)).start()),
|
213 |
+
outputs=None
|
214 |
+
)
|
215 |
+
|
216 |
+
# Display frames
|
217 |
+
demo.load(display_frames, inputs=None, outputs=[output_image, error_box], every=0.03)
|
218 |
|
219 |
# Launch the interface
|
220 |
demo.launch(debug=True)
|