Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,38 +1,31 @@
|
|
| 1 |
-
# Maximize CPU usage
|
| 2 |
-
import multiprocessing
|
| 3 |
-
import cv2
|
| 4 |
-
|
| 5 |
-
# Get the number of CPU cores
|
| 6 |
-
cpu_cores = multiprocessing.cpu_count()
|
| 7 |
-
|
| 8 |
-
# Set OpenCV to use all available cores
|
| 9 |
-
cv2.setNumThreads(cpu_cores)
|
| 10 |
-
|
| 11 |
-
# Print the number of threads being used (optional)
|
| 12 |
-
print(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores")
|
| 13 |
-
|
| 14 |
-
##############
|
| 15 |
import cv2
|
| 16 |
import gradio as gr
|
| 17 |
import numpy as np
|
| 18 |
from PIL import Image, ImageDraw
|
| 19 |
from ultralytics import YOLO
|
| 20 |
-
from ultralytics.utils.plotting import Annotator, colors
|
| 21 |
import logging
|
| 22 |
-
import
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Set up logging
|
| 25 |
logging.basicConfig(level=logging.INFO)
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
-
# Global variables
|
| 29 |
start_point = None
|
| 30 |
end_point = None
|
| 31 |
-
line_params = None # Stores (slope, intercept
|
| 32 |
|
| 33 |
# Low-resolution for inference
|
| 34 |
LOW_RES = (320, 180)
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
def extract_first_frame(stream_url):
|
| 37 |
"""
|
| 38 |
Extracts the first available frame from the IP camera stream and returns it as a PIL image.
|
|
@@ -63,46 +56,27 @@ def update_line(image, evt: gr.SelectData):
|
|
| 63 |
"""
|
| 64 |
global start_point, end_point, line_params
|
| 65 |
|
| 66 |
-
# If it's the first click, set the start point and show it on the image
|
| 67 |
if start_point is None:
|
| 68 |
start_point = (evt.index[0], evt.index[1])
|
| 69 |
-
|
| 70 |
-
# Draw the start point on the image
|
| 71 |
draw = ImageDraw.Draw(image)
|
| 72 |
-
draw.ellipse(
|
| 73 |
-
(start_point[0] - 5, start_point[1] - 5, start_point[0] + 5, start_point[1] + 5),
|
| 74 |
-
fill="blue", outline="blue"
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
return image, f"Line Coordinates:\nStart: {start_point}, End: None"
|
| 78 |
|
| 79 |
-
# If it's the second click, set the end point and draw the line
|
| 80 |
end_point = (evt.index[0], evt.index[1])
|
| 81 |
-
|
| 82 |
-
# Calculate the slope (m) and intercept (b) of the line: y = mx + b
|
| 83 |
if start_point[0] != end_point[0]: # Avoid division by zero
|
| 84 |
slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0])
|
| 85 |
intercept = start_point[1] - slope * start_point[0]
|
| 86 |
-
line_params = (slope, intercept, start_point, end_point)
|
| 87 |
else:
|
| 88 |
-
# Vertical line (special case)
|
| 89 |
line_params = (float('inf'), start_point[0], start_point, end_point)
|
| 90 |
|
| 91 |
-
# Draw the line and end point on the image
|
| 92 |
draw = ImageDraw.Draw(image)
|
| 93 |
draw.line([start_point, end_point], fill="red", width=2)
|
| 94 |
-
draw.ellipse(
|
| 95 |
-
(end_point[0] - 5, end_point[1] - 5, end_point[0] + 5, end_point[1] + 5),
|
| 96 |
-
fill="green", outline="green"
|
| 97 |
-
)
|
| 98 |
|
| 99 |
-
# Return the updated image and line info
|
| 100 |
line_info = f"Line Coordinates:\nStart: {start_point}, End: {end_point}\nLine Equation: y = {line_params[0]:.2f}x + {line_params[1]:.2f}"
|
| 101 |
-
|
| 102 |
-
# Reset the points for the next interaction
|
| 103 |
start_point = None
|
| 104 |
end_point = None
|
| 105 |
-
|
| 106 |
return image, line_info
|
| 107 |
|
| 108 |
def reset_line():
|
|
@@ -115,182 +89,96 @@ def reset_line():
|
|
| 115 |
line_params = None
|
| 116 |
return None, "Line reset. Click to draw a new line."
|
| 117 |
|
| 118 |
-
def intersect(A, B, C, D):
|
| 119 |
-
"""
|
| 120 |
-
Determines if two line segments AB and CD intersect.
|
| 121 |
-
"""
|
| 122 |
-
def ccw(A, B, C):
|
| 123 |
-
return (C[1] - A[1]) * (B[0] - A[0]) - (B[1] - A[1]) * (C[0] - A[0])
|
| 124 |
-
|
| 125 |
-
def on_segment(A, B, C):
|
| 126 |
-
if min(A[0], B[0]) <= C[0] <= max(A[0], B[0]) and min(A[1], B[1]) <= C[1] <= max(A[1], B[1]):
|
| 127 |
-
return True
|
| 128 |
-
return False
|
| 129 |
-
|
| 130 |
-
# Check if the line segments intersect
|
| 131 |
-
ccw1 = ccw(A, B, C)
|
| 132 |
-
ccw2 = ccw(A, B, D)
|
| 133 |
-
ccw3 = ccw(C, D, A)
|
| 134 |
-
ccw4 = ccw(C, D, B)
|
| 135 |
-
|
| 136 |
-
if ((ccw1 * ccw2 < 0) and (ccw3 * ccw4 < 0)):
|
| 137 |
-
return True
|
| 138 |
-
elif ccw1 == 0 and on_segment(A, B, C):
|
| 139 |
-
return True
|
| 140 |
-
elif ccw2 == 0 and on_segment(A, B, D):
|
| 141 |
-
return True
|
| 142 |
-
elif ccw3 == 0 and on_segment(C, D, A):
|
| 143 |
-
return True
|
| 144 |
-
elif ccw4 == 0 and on_segment(C, D, B):
|
| 145 |
-
return True
|
| 146 |
-
else:
|
| 147 |
-
return False
|
| 148 |
-
|
| 149 |
def is_object_crossing_line(box, line_params):
|
| 150 |
"""
|
| 151 |
Determines if an object's bounding box is fully intersected by the user-drawn line.
|
| 152 |
"""
|
| 153 |
_, _, line_start, line_end = line_params
|
| 154 |
-
|
| 155 |
-
# Get the bounding box coordinates
|
| 156 |
x1, y1, x2, y2 = box
|
| 157 |
-
|
| 158 |
-
# Define the four edges of the bounding box
|
| 159 |
-
box_edges = [
|
| 160 |
-
((x1, y1), (x2, y1)), # Top edge
|
| 161 |
-
((x2, y1), (x2, y2)), # Right edge
|
| 162 |
-
((x2, y2), (x1, y2)), # Bottom edge
|
| 163 |
-
((x1, y2), (x1, y1)) # Left edge
|
| 164 |
-
]
|
| 165 |
-
|
| 166 |
-
# Count the number of intersections between the line and the bounding box edges
|
| 167 |
intersection_count = 0
|
| 168 |
for edge_start, edge_end in box_edges:
|
| 169 |
if intersect(line_start, line_end, edge_start, edge_end):
|
| 170 |
intersection_count += 1
|
| 171 |
-
|
| 172 |
-
# Only count the object if the line intersects the bounding box at least twice
|
| 173 |
return intersection_count >= 2
|
| 174 |
|
| 175 |
-
def
|
| 176 |
-
"""
|
| 177 |
-
Draws the user-defined line on the frame.
|
| 178 |
-
"""
|
| 179 |
-
_, _, start_point, end_point = line_params
|
| 180 |
-
cv2.line(image, start_point, end_point, color, thickness)
|
| 181 |
-
|
| 182 |
-
def detect_and_draw(frame):
|
| 183 |
-
"""
|
| 184 |
-
Processes the frame in low resolution and scales the results back to high resolution.
|
| 185 |
-
"""
|
| 186 |
-
# Create low-res copy
|
| 187 |
-
low_res_frame = cv2.resize(frame, LOW_RES)
|
| 188 |
-
|
| 189 |
-
# Perform detection on the low-res frame
|
| 190 |
-
results = model(low_res_frame, verbose=False)
|
| 191 |
-
|
| 192 |
-
# Calculate scaling factors for bounding boxes
|
| 193 |
-
scale_x = frame.shape[1] / LOW_RES[0]
|
| 194 |
-
scale_y = frame.shape[0] / LOW_RES[1]
|
| 195 |
-
|
| 196 |
-
# Draw bounding boxes on the high-res frame
|
| 197 |
-
for detection in results[0].boxes.data:
|
| 198 |
-
x1, y1, x2, y2, conf, cls = detection
|
| 199 |
-
# Scale bounding box coordinates to high-res
|
| 200 |
-
x1, y1, x2, y2 = int(x1 * scale_x), int(y1 * scale_y), int(x2 * scale_x), int(y2 * scale_y)
|
| 201 |
-
label = f"{results[0].names[int(cls)]} {conf:.2f}"
|
| 202 |
-
# Draw the bounding box and label on the high-res frame
|
| 203 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 204 |
-
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
| 205 |
-
|
| 206 |
-
return frame
|
| 207 |
-
|
| 208 |
-
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
| 209 |
"""
|
| 210 |
-
|
| 211 |
"""
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
errors = []
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
if selected_classes is None or len(selected_classes) == 0:
|
| 219 |
-
errors.append("Error: No classes selected. Please select at least one class to detect.")
|
| 220 |
-
if stream_url is None or stream_url.strip() == "":
|
| 221 |
-
errors.append("Error: No stream URL provided.")
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
cap = cv2.VideoCapture(stream_url)
|
| 228 |
-
if not cap.isOpened():
|
| 229 |
-
errors.append("Error: Could not open stream.")
|
| 230 |
-
return None, "\n".join(errors)
|
| 231 |
-
|
| 232 |
model = YOLO(model="yolo11n.pt")
|
| 233 |
crossed_objects = {}
|
| 234 |
-
max_tracked_objects = 1000 # Maximum number of objects to track before clearing
|
| 235 |
|
| 236 |
-
|
| 237 |
-
while cap.isOpened():
|
| 238 |
ret, frame = cap.read()
|
| 239 |
if not ret:
|
| 240 |
-
errors.append("Error: Could not read frame from the stream.")
|
| 241 |
break
|
| 242 |
|
| 243 |
-
# Perform
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
if results[0].boxes.id is not None:
|
| 247 |
-
track_ids = results[0].boxes.id.int().cpu().tolist()
|
| 248 |
-
clss = results[0].boxes.cls.cpu().tolist()
|
| 249 |
-
boxes = results[0].boxes.xyxy.cpu()
|
| 250 |
-
confs = results[0].boxes.conf.cpu().tolist()
|
| 251 |
-
|
| 252 |
-
for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
|
| 253 |
-
if conf >= confidence_threshold and model.names[cls] in selected_classes:
|
| 254 |
-
# Check if the object crosses the line
|
| 255 |
-
if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
|
| 256 |
-
crossed_objects[t_id] = True
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
-
#
|
| 263 |
-
annotated_frame =
|
|
|
|
|
|
|
| 264 |
|
| 265 |
-
#
|
| 266 |
-
|
|
|
|
| 267 |
|
| 268 |
-
|
| 269 |
-
count = len(crossed_objects)
|
| 270 |
-
(text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
|
| 271 |
-
|
| 272 |
-
# Calculate the position for the middle of the top
|
| 273 |
-
margin = 10 # Margin from the top
|
| 274 |
-
x = (annotated_frame.shape[1] - text_width) // 2 # Center-align the text horizontally
|
| 275 |
-
y = text_height + margin # Top-align the text
|
| 276 |
-
|
| 277 |
-
# Draw the black background rectangle
|
| 278 |
-
cv2.rectangle(annotated_frame, (x - margin, y - text_height - margin), (x + text_width + margin, y + margin), (0, 0, 0), -1)
|
| 279 |
-
|
| 280 |
-
# Draw the text
|
| 281 |
-
cv2.putText(annotated_frame, f"COUNT: {count}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
| 282 |
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
# Define the Gradio interface
|
| 290 |
with gr.Blocks() as demo:
|
| 291 |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|
| 292 |
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
|
| 293 |
-
|
| 294 |
# Step 1: Enter the IP Camera Stream URL
|
| 295 |
stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8", visible=False)
|
| 296 |
|
|
@@ -300,33 +188,33 @@ with gr.Blocks() as demo:
|
|
| 300 |
if first_frame is None:
|
| 301 |
gr.Markdown(f"**Error:** {status}")
|
| 302 |
else:
|
| 303 |
-
# Image component for displaying the first frame
|
| 304 |
image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil")
|
| 305 |
-
|
| 306 |
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
|
| 307 |
image.select(update_line, inputs=image, outputs=[image, line_info])
|
| 308 |
|
| 309 |
# Step 2: Select classes to detect
|
| 310 |
gr.Markdown("### Step 2: Select Classes to Detect")
|
| 311 |
-
model = YOLO(model="yolo11n.pt")
|
| 312 |
-
class_names = list(model.names.values())
|
| 313 |
selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect")
|
| 314 |
|
| 315 |
-
# Step 3: Adjust confidence threshold
|
| 316 |
gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)")
|
| 317 |
confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold")
|
| 318 |
|
| 319 |
# Process the stream
|
| 320 |
process_button = gr.Button("Process Stream")
|
| 321 |
-
|
| 322 |
-
# Output image for real-time frame rendering
|
| 323 |
output_image = gr.Image(label="Processed Frame", streaming=True)
|
| 324 |
-
|
| 325 |
-
# Error box to display warnings/errors
|
| 326 |
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
|
| 327 |
|
| 328 |
# Event listener for processing the video
|
| 329 |
-
process_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
# Launch the interface
|
| 332 |
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import cv2
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image, ImageDraw
|
| 5 |
from ultralytics import YOLO
|
|
|
|
| 6 |
import logging
|
| 7 |
+
import threading
|
| 8 |
+
import queue
|
| 9 |
+
import time
|
| 10 |
|
| 11 |
# Set up logging
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
+
# Global variables for line coordinates and line equation
|
| 16 |
start_point = None
|
| 17 |
end_point = None
|
| 18 |
+
line_params = None # Stores (slope, intercept, start_point, end_point)
|
| 19 |
|
| 20 |
# Low-resolution for inference
|
| 21 |
LOW_RES = (320, 180)
|
| 22 |
|
| 23 |
+
# Frame queue for processed frames
|
| 24 |
+
frame_queue = queue.Queue(maxsize=30) # Adjust queue size based on memory constraints
|
| 25 |
+
|
| 26 |
+
# Thread control flag
|
| 27 |
+
processing_active = True
|
| 28 |
+
|
| 29 |
def extract_first_frame(stream_url):
|
| 30 |
"""
|
| 31 |
Extracts the first available frame from the IP camera stream and returns it as a PIL image.
|
|
|
|
| 56 |
"""
|
| 57 |
global start_point, end_point, line_params
|
| 58 |
|
|
|
|
| 59 |
if start_point is None:
|
| 60 |
start_point = (evt.index[0], evt.index[1])
|
|
|
|
|
|
|
| 61 |
draw = ImageDraw.Draw(image)
|
| 62 |
+
draw.ellipse((start_point[0] - 5, start_point[1] - 5, start_point[0] + 5, start_point[1] + 5), fill="blue", outline="blue")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
return image, f"Line Coordinates:\nStart: {start_point}, End: None"
|
| 64 |
|
|
|
|
| 65 |
end_point = (evt.index[0], evt.index[1])
|
|
|
|
|
|
|
| 66 |
if start_point[0] != end_point[0]: # Avoid division by zero
|
| 67 |
slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0])
|
| 68 |
intercept = start_point[1] - slope * start_point[0]
|
| 69 |
+
line_params = (slope, intercept, start_point, end_point)
|
| 70 |
else:
|
|
|
|
| 71 |
line_params = (float('inf'), start_point[0], start_point, end_point)
|
| 72 |
|
|
|
|
| 73 |
draw = ImageDraw.Draw(image)
|
| 74 |
draw.line([start_point, end_point], fill="red", width=2)
|
| 75 |
+
draw.ellipse((end_point[0] - 5, end_point[1] - 5, end_point[0] + 5, end_point[1] + 5), fill="green", outline="green")
|
|
|
|
|
|
|
|
|
|
| 76 |
|
|
|
|
| 77 |
line_info = f"Line Coordinates:\nStart: {start_point}, End: {end_point}\nLine Equation: y = {line_params[0]:.2f}x + {line_params[1]:.2f}"
|
|
|
|
|
|
|
| 78 |
start_point = None
|
| 79 |
end_point = None
|
|
|
|
| 80 |
return image, line_info
|
| 81 |
|
| 82 |
def reset_line():
|
|
|
|
| 89 |
line_params = None
|
| 90 |
return None, "Line reset. Click to draw a new line."
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
def is_object_crossing_line(box, line_params):
|
| 93 |
"""
|
| 94 |
Determines if an object's bounding box is fully intersected by the user-drawn line.
|
| 95 |
"""
|
| 96 |
_, _, line_start, line_end = line_params
|
|
|
|
|
|
|
| 97 |
x1, y1, x2, y2 = box
|
| 98 |
+
box_edges = [((x1, y1), (x2, y1)), ((x2, y1), (x2, y2)), ((x2, y2), (x1, y2)), ((x1, y2), (x1, y1))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
intersection_count = 0
|
| 100 |
for edge_start, edge_end in box_edges:
|
| 101 |
if intersect(line_start, line_end, edge_start, edge_end):
|
| 102 |
intersection_count += 1
|
|
|
|
|
|
|
| 103 |
return intersection_count >= 2
|
| 104 |
|
| 105 |
+
def intersect(A, B, C, D):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
"""
|
| 107 |
+
Determines if two line segments AB and CD intersect.
|
| 108 |
"""
|
| 109 |
+
def ccw(A, B, C):
|
| 110 |
+
return (C[1] - A[1]) * (B[0] - A[0]) - (B[1] - A[1]) * (C[0] - A[0])
|
|
|
|
| 111 |
|
| 112 |
+
def on_segment(A, B, C):
|
| 113 |
+
return min(A[0], B[0]) <= C[0] <= max(A[0], B[0]) and min(A[1], B[1]) <= C[1] <= max(A[1], B[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
ccw1 = ccw(A, B, C)
|
| 116 |
+
ccw2 = ccw(A, B, D)
|
| 117 |
+
ccw3 = ccw(C, D, A)
|
| 118 |
+
ccw4 = ccw(C, D, B)
|
| 119 |
+
return ((ccw1 * ccw2 < 0) and (ccw3 * ccw4 < 0)) or (ccw1 == 0 and on_segment(A, B, C)) or (ccw2 == 0 and on_segment(A, B, D)) or (ccw3 == 0 and on_segment(C, D, A)) or (ccw4 == 0 and on_segment(C, D, B))
|
| 120 |
|
| 121 |
+
def process_frames(stream_url, confidence_threshold, selected_classes):
|
| 122 |
+
"""
|
| 123 |
+
Processes frames in a separate thread and adds them to the frame queue.
|
| 124 |
+
"""
|
| 125 |
+
global processing_active, frame_queue
|
| 126 |
cap = cv2.VideoCapture(stream_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
model = YOLO(model="yolo11n.pt")
|
| 128 |
crossed_objects = {}
|
|
|
|
| 129 |
|
| 130 |
+
while processing_active and cap.isOpened():
|
|
|
|
| 131 |
ret, frame = cap.read()
|
| 132 |
if not ret:
|
|
|
|
| 133 |
break
|
| 134 |
|
| 135 |
+
# Perform detection on low-res frame
|
| 136 |
+
low_res_frame = cv2.resize(frame, LOW_RES)
|
| 137 |
+
results = model.track(low_res_frame, persist=True, conf=confidence_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
+
# Scale bounding boxes to high-res
|
| 140 |
+
scale_x = frame.shape[1] / LOW_RES[0]
|
| 141 |
+
scale_y = frame.shape[0] / LOW_RES[1]
|
| 142 |
+
for detection in results[0].boxes.data:
|
| 143 |
+
x1, y1, x2, y2, conf, cls = detection
|
| 144 |
+
x1, y1, x2, y2 = int(x1 * scale_x), int(y1 * scale_y), int(x2 * scale_x), int(y2 * scale_y)
|
| 145 |
+
if is_object_crossing_line((x1, y1, x2, y2), line_params):
|
| 146 |
+
crossed_objects[results[0].boxes.id.int().cpu().tolist()[0]] = True
|
| 147 |
|
| 148 |
+
# Draw bounding boxes and line on the frame
|
| 149 |
+
annotated_frame = results[0].plot()
|
| 150 |
+
if line_params:
|
| 151 |
+
draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
|
| 152 |
|
| 153 |
+
# Add frame to the queue
|
| 154 |
+
if not frame_queue.full():
|
| 155 |
+
frame_queue.put(annotated_frame)
|
| 156 |
|
| 157 |
+
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
|
| 160 |
+
"""
|
| 161 |
+
Draws the user-defined line on the frame.
|
| 162 |
+
"""
|
| 163 |
+
_, _, start_point, end_point = line_params
|
| 164 |
+
cv2.line(image, start_point, end_point, color, thickness)
|
| 165 |
|
| 166 |
+
def display_frames():
|
| 167 |
+
"""
|
| 168 |
+
Displays frames from the queue at a consistent frame rate.
|
| 169 |
+
"""
|
| 170 |
+
while processing_active:
|
| 171 |
+
if not frame_queue.empty():
|
| 172 |
+
frame = frame_queue.get()
|
| 173 |
+
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), ""
|
| 174 |
+
else:
|
| 175 |
+
time.sleep(0.03) # Wait for the next frame
|
| 176 |
|
| 177 |
# Define the Gradio interface
|
| 178 |
with gr.Blocks() as demo:
|
| 179 |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|
| 180 |
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
|
| 181 |
+
|
| 182 |
# Step 1: Enter the IP Camera Stream URL
|
| 183 |
stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8", visible=False)
|
| 184 |
|
|
|
|
| 188 |
if first_frame is None:
|
| 189 |
gr.Markdown(f"**Error:** {status}")
|
| 190 |
else:
|
|
|
|
| 191 |
image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil")
|
|
|
|
| 192 |
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
|
| 193 |
image.select(update_line, inputs=image, outputs=[image, line_info])
|
| 194 |
|
| 195 |
# Step 2: Select classes to detect
|
| 196 |
gr.Markdown("### Step 2: Select Classes to Detect")
|
| 197 |
+
model = YOLO(model="yolo11n.pt")
|
| 198 |
+
class_names = list(model.names.values())
|
| 199 |
selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect")
|
| 200 |
|
| 201 |
+
# Step 3: Adjust confidence threshold
|
| 202 |
gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)")
|
| 203 |
confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold")
|
| 204 |
|
| 205 |
# Process the stream
|
| 206 |
process_button = gr.Button("Process Stream")
|
|
|
|
|
|
|
| 207 |
output_image = gr.Image(label="Processed Frame", streaming=True)
|
|
|
|
|
|
|
| 208 |
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
|
| 209 |
|
| 210 |
# Event listener for processing the video
|
| 211 |
+
process_button.click(
|
| 212 |
+
fn=lambda: (setattr(globals(), "processing_active", True), threading.Thread(target=process_frames, args=(stream_url.value, confidence_threshold.value, selected_classes.value)).start()),
|
| 213 |
+
outputs=None
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# Display frames
|
| 217 |
+
demo.load(display_frames, inputs=None, outputs=[output_image, error_box], every=0.03)
|
| 218 |
|
| 219 |
# Launch the interface
|
| 220 |
demo.launch(debug=True)
|