Spaces:
Running
Running
import multiprocessing | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from PIL import Image, ImageDraw | |
from ultralytics import YOLO | |
from ultralytics.utils.plotting import Annotator, colors | |
import logging | |
import math | |
import time | |
from collections import deque | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Global variables to store line coordinates and line equation | |
start_point = None | |
end_point = None | |
line_params = None # Stores (slope, intercept) of the line | |
# Maximize CPU usage | |
cpu_cores = multiprocessing.cpu_count() | |
cv2.setNumThreads(cpu_cores) | |
logger.info(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores") | |
def extract_first_frame(stream_url): | |
""" | |
Extracts the first available frame from the IP camera stream and returns it as a PIL image. | |
""" | |
logger.info("Attempting to extract the first frame from the stream...") | |
cap = cv2.VideoCapture(stream_url) | |
if not cap.isOpened(): | |
logger.error("Error: Could not open stream.") | |
return None, "Error: Could not open stream." | |
ret, frame = cap.read() | |
cap.release() | |
if not ret: | |
logger.error("Error: Could not read the first frame.") | |
return None, "Error: Could not read the first frame." | |
# Convert the frame to a PIL image | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(frame_rgb) | |
logger.info("First frame extracted successfully.") | |
return pil_image, "First frame extracted successfully." | |
def update_line(image, evt: gr.SelectData): | |
""" | |
Updates the line based on user interaction (click and drag). | |
""" | |
global start_point, end_point, line_params | |
# If it's the first click, set the start point and show it on the image | |
if start_point is None: | |
start_point = (evt.index[0], evt.index[1]) | |
# Draw the start point on the image | |
draw = ImageDraw.Draw(image) | |
draw.ellipse( | |
(start_point[0] - 5, start_point[1] - 5, start_point[0] + 5, start_point[1] + 5), | |
fill="blue", outline="blue" | |
) | |
return image, f"Line Coordinates:\nStart: {start_point}, End: None" | |
# If it's the second click, set the end point and draw the line | |
end_point = (evt.index[0], evt.index[1]) | |
# Calculate the slope (m) and intercept (b) of the line: y = mx + b | |
if start_point[0] != end_point[0]: # Avoid division by zero | |
slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0]) | |
intercept = start_point[1] - slope * start_point[0] | |
line_params = (slope, intercept, start_point, end_point) # Store slope, intercept, and points | |
else: | |
# Vertical line (special case) | |
line_params = (float('inf'), start_point[0], start_point, end_point) | |
# Draw the line and end point on the image | |
draw = ImageDraw.Draw(image) | |
draw.line([start_point, end_point], fill="red", width=2) | |
draw.ellipse( | |
(end_point[0] - 5, end_point[1] - 5, end_point[0] + 5, end_point[1] + 5), | |
fill="green", outline="green" | |
) | |
# Return the updated image and line info | |
line_info = f"Line Coordinates:\nStart: {start_point}, End: {end_point}\nLine Equation: y = {line_params[0]:.2f}x + {line_params[1]:.2f}" | |
# Reset the points for the next interaction | |
start_point = None | |
end_point = None | |
return image, line_info | |
def reset_line(): | |
""" | |
Resets the line coordinates. | |
""" | |
global start_point, end_point, line_params | |
start_point = None | |
end_point = None | |
line_params = None | |
return None, "Line reset. Click to draw a new line." | |
def intersect(A, B, C, D): | |
""" | |
Determines if two line segments AB and CD intersect. | |
""" | |
def ccw(A, B, C): | |
return (C[1] - A[1]) * (B[0] - A[0]) - (B[1] - A[1]) * (C[0] - A[0]) | |
def on_segment(A, B, C): | |
if min(A[0], B[0]) <= C[0] <= max(A[0], B[0]) and min(A[1], B[1]) <= C[1] <= max(A[1], B[1]): | |
return True | |
return False | |
# Check if the line segments intersect | |
ccw1 = ccw(A, B, C) | |
ccw2 = ccw(A, B, D) | |
ccw3 = ccw(C, D, A) | |
ccw4 = ccw(C, D, B) | |
if ((ccw1 * ccw2 < 0) and (ccw3 * ccw4 < 0)): | |
return True | |
elif ccw1 == 0 and on_segment(A, B, C): | |
return True | |
elif ccw2 == 0 and on_segment(A, B, D): | |
return True | |
elif ccw3 == 0 and on_segment(C, D, A): | |
return True | |
elif ccw4 == 0 and on_segment(C, D, B): | |
return True | |
else: | |
return False | |
def is_object_crossing_line(box, line_params): | |
""" | |
Determines if an object's bounding box is fully intersected by the user-drawn line. | |
""" | |
_, _, line_start, line_end = line_params | |
# Get the bounding box coordinates | |
x1, y1, x2, y2 = box | |
# Define the four edges of the bounding box | |
box_edges = [ | |
((x1, y1), (x2, y1)), # Top edge | |
((x2, y1), (x2, y2)), # Right edge | |
((x2, y2), (x1, y2)), # Bottom edge | |
((x1, y2), (x1, y1)) # Left edge | |
] | |
# Count the number of intersections between the line and the bounding box edges | |
intersection_count = 0 | |
for edge_start, edge_end in box_edges: | |
if intersect(line_start, line_end, edge_start, edge_end): | |
intersection_count += 1 | |
# Only count the object if the line intersects the bounding box at least twice | |
return intersection_count >= 2 | |
def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2): | |
""" | |
Draws the user-defined line on the frame. | |
""" | |
_, _, start_point, end_point = line_params | |
cv2.line(image, start_point, end_point, color, thickness) | |
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None, target_fps=30, model_name="yolov8n.pt"): | |
""" | |
Processes the IP camera stream to count objects of the selected classes crossing the line. | |
""" | |
global line_params | |
errors = [] | |
if line_params is None: | |
errors.append("Error: No line drawn. Please draw a line on the first frame.") | |
if selected_classes is None or len(selected_classes) == 0: | |
errors.append("Error: No classes selected. Please select at least one class to detect.") | |
if stream_url is None or stream_url.strip() == "": | |
errors.append("Error: No stream URL provided.") | |
if errors: | |
return None, "\n".join(errors) | |
logger.info("Connecting to the IP camera stream...") | |
cap = cv2.VideoCapture(stream_url) | |
if not cap.isOpened(): | |
errors.append("Error: Could not open stream.") | |
return None, "\n".join(errors) | |
model = YOLO(model=model_name) | |
crossed_objects = {} | |
max_tracked_objects = 1000 # Maximum number of objects to track before clearing | |
# Queue to hold frames for processing | |
frame_queue = deque(maxlen=10) | |
logger.info("Starting to process the stream...") | |
last_time = time.time() | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
errors.append("Error: Could not read frame from the stream.") | |
break | |
# Add frame to the queue | |
frame_queue.append(frame) | |
# Process frames in the queue | |
if len(frame_queue) > 0: | |
process_frame = frame_queue.popleft() | |
# Perform object tracking with confidence threshold | |
results = model.track(process_frame, persist=True, conf=confidence_threshold) | |
if results[0].boxes.id is not None: | |
track_ids = results[0].boxes.id.int().cpu().tolist() | |
clss = results[0].boxes.cls.cpu().tolist() | |
boxes = results[0].boxes.xyxy.cpu() | |
confs = results[0].boxes.conf.cpu().tolist() | |
for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs): | |
if conf >= confidence_threshold and model.names[cls] in selected_classes: | |
# Check if the object crosses the line | |
if is_object_crossing_line(box, line_params) and t_id not in crossed_objects: | |
crossed_objects[t_id] = True | |
# Clear the dictionary if it gets too large | |
if len(crossed_objects) > max_tracked_objects: | |
crossed_objects.clear() | |
# Visualize the results with bounding boxes, masks, and IDs | |
annotated_frame = results[0].plot() | |
# Draw the angled line on the frame | |
draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2) | |
# Display the count on the frame with a modern look | |
count = len(crossed_objects) | |
(text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2) | |
# Calculate the position for the middle of the top | |
margin = 10 # Margin from the top | |
x = (annotated_frame.shape[1] - text_width) // 2 # Center-align the text horizontally | |
y = text_height + margin # Top-align the text | |
# Draw the black background rectangle | |
cv2.rectangle(annotated_frame, (x - margin, y - text_height - margin), (x + text_width + margin, y + margin), (0, 0, 0), -1) | |
# Draw the text | |
cv2.putText(annotated_frame, f"COUNT: {count}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) | |
# Yield the annotated frame to Gradio | |
yield annotated_frame, "" | |
# Calculate the time taken to process the frame | |
current_time = time.time() | |
elapsed_time = current_time - last_time | |
last_time = current_time | |
# Calculate the time to sleep to maintain the target FPS | |
sleep_time = max(0, (1.0 / target_fps) - elapsed_time) | |
time.sleep(sleep_time) | |
cap.release() | |
logger.info("Stream processing completed.") | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>") | |
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO12") | |
# Step 1: Enter the IP Camera Stream URL | |
ip="https://59d39900ebfb8.streamlock.net/Channels301/default.stream/chunklist_w1780413149.m3u8" | |
stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value=ip, visible=False) | |
# Step 1: Extract the first frame from the stream | |
gr.Markdown("### Step 1: Click on the frame to draw a line, the objects crossing it would be counted in real-time.") | |
first_frame, status = extract_first_frame(stream_url.value) | |
if first_frame is None: | |
gr.Markdown(f"**Error:** {status}") | |
else: | |
# Image component for displaying the first frame | |
image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil") | |
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None") | |
image.select(update_line, inputs=image, outputs=[image, line_info]) | |
# Step 2: Select classes to detect | |
gr.Markdown("### Step 2: Select Classes to Detect") | |
model = YOLO(model="yolov8n.pt") # Load the model to get class names | |
class_names = list(model.names.values()) # Get class names | |
selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect") | |
# Step 3: Adjust confidence threshold | |
gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)") | |
confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold") | |
# Step 4: Set target FPS | |
gr.Markdown("### Step 4: Set Target FPS (Optional)") | |
target_fps = gr.Slider(minimum=1, maximum=120*4, value=60, label="Target FPS", interactive=False) | |
# Step 5: Select YOLO model | |
gr.Markdown("### Step 5: Select YOLO Model") | |
model_name = gr.Dropdown(choices=["yolov8n.pt", "yolo11n.pt","yolo12n.pt"], label="Select YOLO Model", value="yolo12n.pt") | |
# Process the stream | |
process_button = gr.Button("Process Stream") | |
# Output image for real-time frame rendering | |
output_image = gr.Image(label="Processed Frame", streaming=True) | |
# Error box to display warnings/errors | |
error_box = gr.Textbox(label="Errors/Warnings", interactive=False) | |
# Event listener for processing the video | |
process_button.click(process_video, inputs=[confidence_threshold, selected_classes, stream_url, target_fps, model_name], outputs=[output_image, error_box]) | |
# Launch the interface | |
demo.launch(debug=True) |