Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
2 |
+
from flask import Flask, request, jsonify
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Initialize Flask app
|
6 |
+
app = Flask(__name__)
|
7 |
+
|
8 |
+
# Load pre-trained DistilBERT model and tokenizer
|
9 |
+
model_name = "distilbert-base-uncased"
|
10 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
|
11 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Ensure the model is in evaluation mode
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
# Define a function to predict score and risk
|
17 |
+
def predict_deal_qualification(inputs):
|
18 |
+
# Prepare input text
|
19 |
+
input_text = f"{inputs['industry']} {inputs['stage']} {inputs['amount']} {inputs['lead_score']}"
|
20 |
+
|
21 |
+
# Tokenize the input
|
22 |
+
tokens = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
23 |
+
|
24 |
+
# Run model inference
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model(**tokens)
|
27 |
+
|
28 |
+
# Get prediction logits
|
29 |
+
logits = outputs.logits
|
30 |
+
score = torch.sigmoid(logits).item() # Convert logits to probability (0-1 range)
|
31 |
+
|
32 |
+
# Risk classification (for simplicity, let's map logits to Low, Medium, High)
|
33 |
+
risk_classes = ["Low", "Medium", "High"]
|
34 |
+
risk = risk_classes[torch.argmax(logits).item()]
|
35 |
+
|
36 |
+
# Dummy recommendation (customize this as needed)
|
37 |
+
recommendation = "Schedule another meeting before sending proposal."
|
38 |
+
|
39 |
+
return {
|
40 |
+
"score": round(score * 100, 2), # Scale the score to 0-100
|
41 |
+
"confidence": round(torch.max(torch.softmax(logits, dim=-1)).item(), 2),
|
42 |
+
"risk": risk,
|
43 |
+
"recommendation": recommendation
|
44 |
+
}
|
45 |
+
|
46 |
+
# Define an endpoint for deal qualification prediction
|
47 |
+
@app.route('/predict', methods=['POST'])
|
48 |
+
def predict():
|
49 |
+
# Get input JSON data from POST request
|
50 |
+
data = request.get_json()
|
51 |
+
|
52 |
+
# Validate input structure
|
53 |
+
if not all(key in data for key in ['industry', 'stage', 'amount', 'lead_score']):
|
54 |
+
return jsonify({"error": "Missing required input data"}), 400
|
55 |
+
|
56 |
+
# Predict using the pre-trained model
|
57 |
+
result = predict_deal_qualification(data)
|
58 |
+
|
59 |
+
# Return the prediction result as JSON
|
60 |
+
return jsonify(result)
|
61 |
+
|
62 |
+
# Run the app
|
63 |
+
if __name__ == '__main__':
|
64 |
+
app.run(debug=True, host="0.0.0.0", port=5000)
|