karthikmn commited on
Commit
671baae
·
verified ·
1 Parent(s): 8ae1f68

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +12 -22
model.py CHANGED
@@ -1,37 +1,27 @@
1
- import torch
2
- from transformers import BertTokenizer, BertModel, T5ForConditionalGeneration
3
- from transformers import AutoModelForSequenceClassification
4
- from utilities import preprocess_features, generate_recommendation
5
-
6
- MODEL_NAME = "sathkrutha/deal-score-model" # Use your actual repo ID
7
- SUMMARIZER_PATH = "t5-small" # Can use distilgpt2 or other summarizers
8
 
 
9
  def load_model():
10
- model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
11
- tokenizer = BertTokenizer.from_pretrained(MODEL_PATH)
12
- summarizer = T5ForConditionalGeneration.from_pretrained(SUMMARIZER_PATH)
13
- return model, tokenizer, summarizer
14
 
15
- def predict_deal_score(input_data, model, tokenizer, summarizer):
16
- features = preprocess_features(input_data)
17
- inputs = tokenizer(features["text"], return_tensors="pt")
18
-
19
- with torch.no_grad():
20
- outputs = model(**inputs)
21
- score = round(outputs.logits[0][0].item() * 100)
22
- confidence = torch.softmax(outputs.logits[0], dim=-1).max().item()
23
 
 
 
 
24
  risk = (
25
  "Low" if score > 75 else
26
- "Medium" if score > 50 else
27
  "High"
28
  )
29
 
30
- recommendation = generate_recommendation(summarizer, input_data)
31
 
32
  return {
33
  "score": score,
34
- "confidence": round(confidence, 2),
35
  "risk": risk,
36
  "recommendation": recommendation
37
  }
 
1
+ import random
2
+ from utilities import prepare_text_input, generate_recommendation
 
 
 
 
 
3
 
4
+ # Mock objects (None used in mock version)
5
  def load_model():
6
+ return None, None, None
 
 
 
7
 
8
+ def predict(data, model, tokenizer, summarizer):
9
+ text_input = prepare_text_input(data)
 
 
 
 
 
 
10
 
11
+ # Simulated scoring logic
12
+ score = random.randint(45, 95)
13
+ confidence = round(random.uniform(0.6, 0.95), 2)
14
  risk = (
15
  "Low" if score > 75 else
16
+ "Medium" if score >= 55 else
17
  "High"
18
  )
19
 
20
+ recommendation = generate_recommendation(data)
21
 
22
  return {
23
  "score": score,
24
+ "confidence": confidence,
25
  "risk": risk,
26
  "recommendation": recommendation
27
  }