Spaces:
Sleeping
Sleeping
| import easyocr | |
| import numpy as np | |
| import re | |
| import cv2 | |
| reader = easyocr.Reader(['en'], gpu=False) | |
| def extract_weight_from_image(pil_img): | |
| try: | |
| img = np.array(pil_img) | |
| # Convert to grayscale | |
| gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
| # Apply bilateral filter to reduce noise while keeping edges | |
| filtered = cv2.bilateralFilter(gray, 11, 17, 17) | |
| # Apply binary threshold | |
| _, thresh = cv2.threshold(filtered, 150, 255, cv2.THRESH_BINARY_INV) | |
| # Find contours | |
| contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| if not contours: | |
| return "No weight detected", 0.0 | |
| # Get the largest contour assuming it's the display area | |
| largest_contour = max(contours, key=cv2.contourArea) | |
| x, y, w, h = cv2.boundingRect(largest_contour) | |
| # Add padding | |
| pad = 10 | |
| x, y = max(x - pad, 0), max(y - pad, 0) | |
| cropped = gray[y:y+h+pad, x:x+w+pad] | |
| # OCR on cropped area | |
| result = reader.readtext(cropped, detail=0) | |
| combined = " ".join(result) | |
| print("Detected Text:", combined) | |
| # Match weight patterns like 52.30 or 003.25 | |
| match = re.search(r"\b\d{2,4}\.?\d{0,2}\b", combined) | |
| if match: | |
| return match.group(), 95.0 | |
| else: | |
| return "No weight detected", 0.0 | |
| except Exception as e: | |
| return f"Error: {str(e)}", 0.0 | |