Spaces:
Sleeping
Sleeping
Update ocr_engine.py
Browse files- ocr_engine.py +111 -79
ocr_engine.py
CHANGED
|
@@ -32,25 +32,25 @@ def estimate_brightness(img):
|
|
| 32 |
return np.mean(gray)
|
| 33 |
|
| 34 |
def preprocess_image(img):
|
| 35 |
-
"""Preprocess image
|
| 36 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 37 |
brightness = estimate_brightness(img)
|
| 38 |
-
#
|
| 39 |
-
clahe_clip =
|
| 40 |
-
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(
|
| 41 |
enhanced = clahe.apply(gray)
|
| 42 |
save_debug_image(enhanced, "01_preprocess_clahe")
|
| 43 |
-
#
|
| 44 |
-
blurred = cv2.
|
| 45 |
save_debug_image(blurred, "02_preprocess_blur")
|
| 46 |
-
#
|
| 47 |
-
block_size = max(
|
| 48 |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 49 |
-
cv2.THRESH_BINARY_INV, block_size,
|
| 50 |
-
# Morphological operations
|
| 51 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
| 52 |
-
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=
|
| 53 |
-
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=
|
| 54 |
save_debug_image(thresh, "03_preprocess_morph")
|
| 55 |
return thresh, enhanced
|
| 56 |
|
|
@@ -58,12 +58,12 @@ def correct_rotation(img):
|
|
| 58 |
"""Correct image rotation using edge detection."""
|
| 59 |
try:
|
| 60 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 61 |
-
edges = cv2.Canny(gray,
|
| 62 |
-
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=
|
| 63 |
if lines is not None:
|
| 64 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
| 65 |
angle = np.median(angles)
|
| 66 |
-
if abs(angle) > 0.
|
| 67 |
h, w = img.shape[:2]
|
| 68 |
center = (w // 2, h // 2)
|
| 69 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
|
@@ -76,20 +76,20 @@ def correct_rotation(img):
|
|
| 76 |
return img
|
| 77 |
|
| 78 |
def detect_roi(img):
|
| 79 |
-
"""Detect region of interest with
|
| 80 |
try:
|
| 81 |
save_debug_image(img, "04_original")
|
| 82 |
thresh, enhanced = preprocess_image(img)
|
| 83 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 84 |
-
block_sizes = [max(
|
| 85 |
valid_contours = []
|
| 86 |
img_area = img.shape[0] * img.shape[1]
|
| 87 |
|
| 88 |
for block_size in block_sizes:
|
| 89 |
temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 90 |
-
|
| 91 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
|
| 92 |
-
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=
|
| 93 |
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
|
| 94 |
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 95 |
|
|
@@ -98,15 +98,15 @@ def detect_roi(img):
|
|
| 98 |
x, y, w, h = cv2.boundingRect(c)
|
| 99 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
| 100 |
aspect_ratio = w / h
|
| 101 |
-
if (
|
| 102 |
-
0.
|
| 103 |
valid_contours.append((c, area * roi_brightness))
|
| 104 |
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
| 105 |
|
| 106 |
if valid_contours:
|
| 107 |
contour, _ = max(valid_contours, key=lambda x: x[1])
|
| 108 |
x, y, w, h = cv2.boundingRect(contour)
|
| 109 |
-
padding = max(
|
| 110 |
x, y = max(0, x - padding), max(0, y - padding)
|
| 111 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
| 112 |
roi_img = img[y:y+h, x:x+w]
|
|
@@ -122,66 +122,98 @@ def detect_roi(img):
|
|
| 122 |
save_debug_image(img, "06_roi_error_fallback")
|
| 123 |
return img, None
|
| 124 |
|
| 125 |
-
def
|
| 126 |
-
"""
|
| 127 |
try:
|
| 128 |
h, w = digit_img.shape
|
| 129 |
-
if h <
|
| 130 |
-
logging.debug("Digit image too small for
|
| 131 |
return None
|
| 132 |
|
| 133 |
-
#
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
return '8'
|
| 159 |
-
elif density > 0.3:
|
| 160 |
-
return '0'
|
| 161 |
-
elif aspect > 0.4 and area_ratio > 0.5:
|
| 162 |
-
if density > 0.4:
|
| 163 |
-
return '3'
|
| 164 |
-
elif density > 0.3:
|
| 165 |
-
return '2'
|
| 166 |
-
elif aspect > 0.3 and area_ratio > 0.4:
|
| 167 |
-
return '5' if density > 0.3 else '7'
|
| 168 |
-
elif aspect > 0.2 and area_ratio > 0.3:
|
| 169 |
-
return '4' if density > 0.2 else '9'
|
| 170 |
-
return None
|
| 171 |
except Exception as e:
|
| 172 |
-
logging.error(f"
|
| 173 |
return None
|
| 174 |
|
| 175 |
def perform_ocr(img, roi_bbox):
|
| 176 |
-
"""Perform OCR with Tesseract and
|
| 177 |
try:
|
| 178 |
thresh, enhanced = preprocess_image(img)
|
| 179 |
brightness = estimate_brightness(img)
|
| 180 |
pil_img = Image.fromarray(enhanced)
|
| 181 |
save_debug_image(pil_img, "07_ocr_input")
|
| 182 |
|
| 183 |
-
# Tesseract with
|
| 184 |
-
custom_config = r'--oem 3 --psm
|
| 185 |
text = pytesseract.image_to_string(pil_img, config=custom_config)
|
| 186 |
logging.info(f"Tesseract raw output: {text}")
|
| 187 |
|
|
@@ -192,17 +224,17 @@ def perform_ocr(img, roi_bbox):
|
|
| 192 |
text = text.strip('.')
|
| 193 |
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
| 194 |
text = text.lstrip('0') or '0'
|
| 195 |
-
confidence =
|
| 196 |
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
|
| 197 |
return text, confidence
|
| 198 |
|
| 199 |
-
# Fallback to
|
| 200 |
-
logging.info("Tesseract failed, using
|
| 201 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 202 |
digits_info = []
|
| 203 |
for c in contours:
|
| 204 |
x, y, w, h = cv2.boundingRect(c)
|
| 205 |
-
if w >
|
| 206 |
digits_info.append((x, x+w, y, y+h))
|
| 207 |
|
| 208 |
if digits_info:
|
|
@@ -216,10 +248,10 @@ def perform_ocr(img, roi_bbox):
|
|
| 216 |
continue
|
| 217 |
digit_crop = thresh[y_min:y_max, x_min:x_max]
|
| 218 |
save_debug_image(digit_crop, f"08_digit_crop_{idx}")
|
| 219 |
-
digit =
|
| 220 |
if digit:
|
| 221 |
recognized_text += digit
|
| 222 |
-
elif x_min - prev_x_max <
|
| 223 |
recognized_text += '.'
|
| 224 |
prev_x_max = x_max
|
| 225 |
|
|
@@ -229,8 +261,8 @@ def perform_ocr(img, roi_bbox):
|
|
| 229 |
text = text.strip('.')
|
| 230 |
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
| 231 |
text = text.lstrip('0') or '0'
|
| 232 |
-
confidence = 92.0 if len(text.replace('.', '')) >= 3 else
|
| 233 |
-
logging.info(f"Validated
|
| 234 |
return text, confidence
|
| 235 |
|
| 236 |
logging.info("No valid digits detected.")
|
|
@@ -240,18 +272,18 @@ def perform_ocr(img, roi_bbox):
|
|
| 240 |
return None, 0.0
|
| 241 |
|
| 242 |
def extract_weight_from_image(pil_img):
|
| 243 |
-
"""Extract weight from
|
| 244 |
try:
|
| 245 |
img = np.array(pil_img)
|
| 246 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 247 |
save_debug_image(img, "00_input_image")
|
| 248 |
img = correct_rotation(img)
|
| 249 |
brightness = estimate_brightness(img)
|
| 250 |
-
conf_threshold = 0.
|
| 251 |
|
| 252 |
roi_img, roi_bbox = detect_roi(img)
|
| 253 |
if roi_bbox:
|
| 254 |
-
conf_threshold *= 1.
|
| 255 |
|
| 256 |
result, confidence = perform_ocr(roi_img, roi_bbox)
|
| 257 |
if result and confidence >= conf_threshold * 100:
|
|
@@ -266,7 +298,7 @@ def extract_weight_from_image(pil_img):
|
|
| 266 |
|
| 267 |
logging.info("Primary OCR failed, using full image fallback.")
|
| 268 |
result, confidence = perform_ocr(img, None)
|
| 269 |
-
if result and confidence >= conf_threshold * 0.
|
| 270 |
try:
|
| 271 |
weight = float(result)
|
| 272 |
if 0.01 <= weight <= 1000:
|
|
|
|
| 32 |
return np.mean(gray)
|
| 33 |
|
| 34 |
def preprocess_image(img):
|
| 35 |
+
"""Preprocess image with aggressive contrast and noise handling."""
|
| 36 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 37 |
brightness = estimate_brightness(img)
|
| 38 |
+
# Maximum CLAHE for extreme contrast
|
| 39 |
+
clahe_clip = 10.0 if brightness < 80 else 6.0
|
| 40 |
+
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(6, 6))
|
| 41 |
enhanced = clahe.apply(gray)
|
| 42 |
save_debug_image(enhanced, "01_preprocess_clahe")
|
| 43 |
+
# Edge-preserving blur
|
| 44 |
+
blurred = cv2.bilateralFilter(enhanced, 5, 75, 75)
|
| 45 |
save_debug_image(blurred, "02_preprocess_blur")
|
| 46 |
+
# Adaptive thresholding with small blocks
|
| 47 |
+
block_size = max(5, min(15, int(img.shape[0] / 30) * 2 + 1))
|
| 48 |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 49 |
+
cv2.THRESH_BINARY_INV, block_size, 3)
|
| 50 |
+
# Morphological operations for digit segmentation
|
| 51 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
| 52 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
| 53 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=5)
|
| 54 |
save_debug_image(thresh, "03_preprocess_morph")
|
| 55 |
return thresh, enhanced
|
| 56 |
|
|
|
|
| 58 |
"""Correct image rotation using edge detection."""
|
| 59 |
try:
|
| 60 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 61 |
+
edges = cv2.Canny(gray, 20, 80, apertureSize=3)
|
| 62 |
+
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=30, minLineLength=15, maxLineGap=5)
|
| 63 |
if lines is not None:
|
| 64 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
| 65 |
angle = np.median(angles)
|
| 66 |
+
if abs(angle) > 0.3:
|
| 67 |
h, w = img.shape[:2]
|
| 68 |
center = (w // 2, h // 2)
|
| 69 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
|
|
|
| 76 |
return img
|
| 77 |
|
| 78 |
def detect_roi(img):
|
| 79 |
+
"""Detect region of interest with flexible contour filtering."""
|
| 80 |
try:
|
| 81 |
save_debug_image(img, "04_original")
|
| 82 |
thresh, enhanced = preprocess_image(img)
|
| 83 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 84 |
+
block_sizes = [max(5, min(15, int(img.shape[0] / s) * 2 + 1)) for s in [6, 10, 15]]
|
| 85 |
valid_contours = []
|
| 86 |
img_area = img.shape[0] * img.shape[1]
|
| 87 |
|
| 88 |
for block_size in block_sizes:
|
| 89 |
temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 90 |
+
cv2.THRESH_BINARY_INV, block_size, 3)
|
| 91 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
|
| 92 |
+
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=5)
|
| 93 |
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
|
| 94 |
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 95 |
|
|
|
|
| 98 |
x, y, w, h = cv2.boundingRect(c)
|
| 99 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
| 100 |
aspect_ratio = w / h
|
| 101 |
+
if (200 < area < (img_area * 0.7) and
|
| 102 |
+
0.2 <= aspect_ratio <= 10.0 and w > 50 and h > 20 and roi_brightness > 40):
|
| 103 |
valid_contours.append((c, area * roi_brightness))
|
| 104 |
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
| 105 |
|
| 106 |
if valid_contours:
|
| 107 |
contour, _ = max(valid_contours, key=lambda x: x[1])
|
| 108 |
x, y, w, h = cv2.boundingRect(contour)
|
| 109 |
+
padding = max(15, min(40, int(min(w, h) * 0.3)))
|
| 110 |
x, y = max(0, x - padding), max(0, y - padding)
|
| 111 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
| 112 |
roi_img = img[y:y+h, x:x+w]
|
|
|
|
| 122 |
save_debug_image(img, "06_roi_error_fallback")
|
| 123 |
return img, None
|
| 124 |
|
| 125 |
+
def detect_digit_template(digit_img, brightness):
|
| 126 |
+
"""Digit recognition using template matching with predefined patterns."""
|
| 127 |
try:
|
| 128 |
h, w = digit_img.shape
|
| 129 |
+
if h < 10 or w < 5:
|
| 130 |
+
logging.debug("Digit image too small for template matching.")
|
| 131 |
return None
|
| 132 |
|
| 133 |
+
# Predefined digit templates (simplified binary patterns)
|
| 134 |
+
digit_templates = {
|
| 135 |
+
'0': np.array([[1, 1, 1, 1, 1],
|
| 136 |
+
[1, 0, 0, 0, 1],
|
| 137 |
+
[1, 0, 0, 0, 1],
|
| 138 |
+
[1, 0, 0, 0, 1],
|
| 139 |
+
[1, 1, 1, 1, 1]]),
|
| 140 |
+
'1': np.array([[0, 0, 1, 0, 0],
|
| 141 |
+
[0, 0, 1, 0, 0],
|
| 142 |
+
[0, 0, 1, 0, 0],
|
| 143 |
+
[0, 0, 1, 0, 0],
|
| 144 |
+
[0, 0, 1, 0, 0]]),
|
| 145 |
+
'2': np.array([[1, 1, 1, 1, 1],
|
| 146 |
+
[0, 0, 0, 0, 1],
|
| 147 |
+
[1, 1, 1, 1, 1],
|
| 148 |
+
[1, 0, 0, 0, 0],
|
| 149 |
+
[1, 1, 1, 1, 1]]),
|
| 150 |
+
'3': np.array([[1, 1, 1, 1, 1],
|
| 151 |
+
[0, 0, 0, 0, 1],
|
| 152 |
+
[1, 1, 1, 1, 1],
|
| 153 |
+
[0, 0, 0, 0, 1],
|
| 154 |
+
[1, 1, 1, 1, 1]]),
|
| 155 |
+
'4': np.array([[1, 0, 0, 0, 1],
|
| 156 |
+
[1, 0, 0, 0, 1],
|
| 157 |
+
[1, 1, 1, 1, 1],
|
| 158 |
+
[0, 0, 0, 0, 1],
|
| 159 |
+
[0, 0, 0, 0, 1]]),
|
| 160 |
+
'5': np.array([[1, 1, 1, 1, 1],
|
| 161 |
+
[1, 0, 0, 0, 0],
|
| 162 |
+
[1, 1, 1, 1, 1],
|
| 163 |
+
[0, 0, 0, 0, 1],
|
| 164 |
+
[1, 1, 1, 1, 1]]),
|
| 165 |
+
'6': np.array([[1, 1, 1, 1, 1],
|
| 166 |
+
[1, 0, 0, 0, 0],
|
| 167 |
+
[1, 1, 1, 1, 1],
|
| 168 |
+
[1, 0, 0, 0, 1],
|
| 169 |
+
[1, 1, 1, 1, 1]]),
|
| 170 |
+
'7': np.array([[1, 1, 1, 1, 1],
|
| 171 |
+
[0, 0, 0, 0, 1],
|
| 172 |
+
[0, 0, 0, 0, 1],
|
| 173 |
+
[0, 0, 0, 0, 1],
|
| 174 |
+
[0, 0, 0, 0, 1]]),
|
| 175 |
+
'8': np.array([[1, 1, 1, 1, 1],
|
| 176 |
+
[1, 0, 0, 0, 1],
|
| 177 |
+
[1, 1, 1, 1, 1],
|
| 178 |
+
[1, 0, 0, 0, 1],
|
| 179 |
+
[1, 1, 1, 1, 1]]),
|
| 180 |
+
'9': np.array([[1, 1, 1, 1, 1],
|
| 181 |
+
[1, 0, 0, 0, 1],
|
| 182 |
+
[1, 1, 1, 1, 1],
|
| 183 |
+
[0, 0, 0, 0, 1],
|
| 184 |
+
[1, 1, 1, 1, 1]]),
|
| 185 |
+
'.': np.array([[0, 0, 0],
|
| 186 |
+
[0, 1, 0],
|
| 187 |
+
[0, 0, 0]])
|
| 188 |
+
}
|
| 189 |
|
| 190 |
+
# Resize digit_img to match template size (5x5 for digits, 3x3 for decimal)
|
| 191 |
+
digit_img_resized = cv2.resize(digit_img, (5, 5), interpolation=cv2.INTER_NEAREST)
|
| 192 |
+
best_match, best_score = None, -1
|
| 193 |
+
for digit, template in digit_templates.items():
|
| 194 |
+
if digit == '.':
|
| 195 |
+
digit_img_resized = cv2.resize(digit_img, (3, 3), interpolation=cv2.INTER_NEAREST)
|
| 196 |
+
result = cv2.matchTemplate(digit_img_resized, template, cv2.TM_CCOEFF_NORMED)
|
| 197 |
+
_, max_val, _, _ = cv2.minMaxLoc(result)
|
| 198 |
+
if max_val > 0.7 and max_val > best_score:
|
| 199 |
+
best_score = max_val
|
| 200 |
+
best_match = digit
|
| 201 |
+
logging.debug(f"Template match: {best_match}, Score: {best_score:.2f}")
|
| 202 |
+
return best_match if best_score > 0.7 else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
except Exception as e:
|
| 204 |
+
logging.error(f"Template digit detection failed: {str(e)}")
|
| 205 |
return None
|
| 206 |
|
| 207 |
def perform_ocr(img, roi_bbox):
|
| 208 |
+
"""Perform OCR with Tesseract and template-based fallback."""
|
| 209 |
try:
|
| 210 |
thresh, enhanced = preprocess_image(img)
|
| 211 |
brightness = estimate_brightness(img)
|
| 212 |
pil_img = Image.fromarray(enhanced)
|
| 213 |
save_debug_image(pil_img, "07_ocr_input")
|
| 214 |
|
| 215 |
+
# Tesseract with flexible numeric config
|
| 216 |
+
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
|
| 217 |
text = pytesseract.image_to_string(pil_img, config=custom_config)
|
| 218 |
logging.info(f"Tesseract raw output: {text}")
|
| 219 |
|
|
|
|
| 224 |
text = text.strip('.')
|
| 225 |
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
| 226 |
text = text.lstrip('0') or '0'
|
| 227 |
+
confidence = 97.0 if len(text.replace('.', '')) >= 3 else 94.0
|
| 228 |
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
|
| 229 |
return text, confidence
|
| 230 |
|
| 231 |
+
# Fallback to template-based detection
|
| 232 |
+
logging.info("Tesseract failed, using template-based detection.")
|
| 233 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 234 |
digits_info = []
|
| 235 |
for c in contours:
|
| 236 |
x, y, w, h = cv2.boundingRect(c)
|
| 237 |
+
if w > 8 and h > 10 and 0.1 <= w/h <= 2.0:
|
| 238 |
digits_info.append((x, x+w, y, y+h))
|
| 239 |
|
| 240 |
if digits_info:
|
|
|
|
| 248 |
continue
|
| 249 |
digit_crop = thresh[y_min:y_max, x_min:x_max]
|
| 250 |
save_debug_image(digit_crop, f"08_digit_crop_{idx}")
|
| 251 |
+
digit = detect_digit_template(digit_crop, brightness)
|
| 252 |
if digit:
|
| 253 |
recognized_text += digit
|
| 254 |
+
elif x_min - prev_x_max < 8 and prev_x_max != -float('inf'):
|
| 255 |
recognized_text += '.'
|
| 256 |
prev_x_max = x_max
|
| 257 |
|
|
|
|
| 261 |
text = text.strip('.')
|
| 262 |
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
| 263 |
text = text.lstrip('0') or '0'
|
| 264 |
+
confidence = 92.0 if len(text.replace('.', '')) >= 3 else 89.0
|
| 265 |
+
logging.info(f"Validated template text: {text}, Confidence: {confidence:.2f}%")
|
| 266 |
return text, confidence
|
| 267 |
|
| 268 |
logging.info("No valid digits detected.")
|
|
|
|
| 272 |
return None, 0.0
|
| 273 |
|
| 274 |
def extract_weight_from_image(pil_img):
|
| 275 |
+
"""Extract weight from any digital scale image."""
|
| 276 |
try:
|
| 277 |
img = np.array(pil_img)
|
| 278 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 279 |
save_debug_image(img, "00_input_image")
|
| 280 |
img = correct_rotation(img)
|
| 281 |
brightness = estimate_brightness(img)
|
| 282 |
+
conf_threshold = 0.8 if brightness > 100 else 0.6
|
| 283 |
|
| 284 |
roi_img, roi_bbox = detect_roi(img)
|
| 285 |
if roi_bbox:
|
| 286 |
+
conf_threshold *= 1.05 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.2) else 1.0
|
| 287 |
|
| 288 |
result, confidence = perform_ocr(roi_img, roi_bbox)
|
| 289 |
if result and confidence >= conf_threshold * 100:
|
|
|
|
| 298 |
|
| 299 |
logging.info("Primary OCR failed, using full image fallback.")
|
| 300 |
result, confidence = perform_ocr(img, None)
|
| 301 |
+
if result and confidence >= conf_threshold * 0.85 * 100:
|
| 302 |
try:
|
| 303 |
weight = float(result)
|
| 304 |
if 0.01 <= weight <= 1000:
|